This project derives information-theoretic fundamental limits and tradeoffs of classical and quantum distributed sensing (detection and estimation) systems, which are key in the Industry 4.0, smart cities, environmental applicatio...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
PCI2022-134968-2
ARTIFICIAL INTELLIGENCE USING QUANTUM MEASURED INFORMATION F...
119K€
Cerrado
QBridges
Schrödinger bridges to open quantum systems
165K€
Cerrado
A-IQ Ready
Artificial Intelligence using Quantum measured Information f...
33M€
Cerrado
PCI2022-135077-2
ARTIFICIAL INTELLIGENCE USING QUANTUM MEASURED INFORMATION F...
304K€
Cerrado
RYC2018-025197-I
Quantum technologies for quantum sensing and quantum informa...
309K€
Cerrado
MANET
Metric Analysis for Emergent Technologies
4M€
Cerrado
Información proyecto FLoSS
Duración del proyecto: 59 meses
Fecha Inicio: 2024-06-01
Fecha Fin: 2029-05-31
Líder del proyecto
INSTITUT MINESTELECOM
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
2M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
This project derives information-theoretic fundamental limits and tradeoffs of classical and quantum distributed sensing (detection and estimation) systems, which are key in the Industry 4.0, smart cities, environmental applications, autonomous vehicles, etc. Our limits will: 1) serve as benchmarks for practical designs; 2) characterize the inherent tradeoffs; and 3) provide engineering guidelines. So far, a technique is missing that can derive the limits of modern distributed sensing systems with multiple decision centers, multiple objectives, and interactive and sequential behaviours. For the emerging field of quantum sensing even the limits of simple distributed systems have not been derived. With our recent converse proof technique (which already served to establish limits of detection, channel coding, and compression problems) we have a powerful tool for obtaining the desired strong or probability-of-error dependent converse proofs.