Fundamental investigations of high resolution LA ICPMS Fast Imaging Resolutio...
Fundamental investigations of high resolution LA ICPMS Fast Imaging Resolution Sensitivity and Time FIRST
Laser ablation–inductively coupled plasma mass spectrometry (LA–ICPMS) is a robust, sensitive, and wide-dynamic-range micro-analytical technique for the spatially resolved determination of elemental composition. In LA–ICPMS, a pul...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
HSPTFE
Highly sensitive, high spatial resolution, high throughput a...
165K€
Cerrado
EQC2018-004741-P
Adquisición de equipo de plasma de acoplamiento inductivo (I...
114K€
Cerrado
RYC2021-031093-I
Exploring new venues in trace elemental and isotopic analysi...
236K€
Cerrado
EQC2018-004089-P
Adquisición de dispositivo de ablación láser para poder real...
105K€
Cerrado
RYC2021-033874-I
High-precision isotopic, elemental and spatial resolved anal...
236K€
Cerrado
MAT2010-20921-C02-02
DESARROLLO INSTRUMENTAL EN TECNICAS DE ANALISIS DIRECTO DE M...
73K€
Cerrado
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Laser ablation–inductively coupled plasma mass spectrometry (LA–ICPMS) is a robust, sensitive, and wide-dynamic-range micro-analytical technique for the spatially resolved determination of elemental composition. In LA–ICPMS, a pulsed laser beam removes (ablates) minute quantities of solid sample, which are transferred online to an ICPMS for elemental and/or isotopic analysis. When combined with precise sample positioning, LA–ICPMS can generate two- or even three-dimensional maps of element-abundance maps across a sample surface. However, conventional ICPMS instruments only measure ions of one mass-to-charge value (m/z) and, in combination with the transient nature of LA signals, this limits the precision and accuracy of multi-elemental LA-ICPMS. Additionally, commercial LA cells are designed to distribute the ablated analyte over a period of several seconds to deliver pseudo steady-state analytical signals; these long residence times increase measurement time and limit spatial resolution. In this project, I will combine recently developed fast-washout LA-cell technology with a new ICP–time-of-flight mass spectrometer (ICP–TOFMS) developed in the Günther lab at ETH Zurich. The LA cell temporally compresses and concentrates ablated aerosol into a narrow plug, which improves signal-to-noise ratio, and delivers it into the ICP–TOFMS for rapid simultaneous and complete elemental mass-spectrum generation (1 spectrum every 33 µs). Fast-flow LA–ICP–TOFMS overcomes the limitations of sequential-acquisition MS approaches, and can be used to produce high-resolution elemental images with measurement speeds two orders of magnitude faster than conventional systems. Current ICP–TOFMS sensitivities should allow trace-element mapping with resolution approaching one micrometer; this resolution will enable novel measurements of both micro-scale geological features such as fluid inclusions and zircon domains and sub-cellular elemental distributions in biological tissues.