Fundamental Fields and Compact Objects: new opportunities
The celebrated detection of gravitational waves (GWs), the first observation of horizon scale structure of a black hole (BH) together with the developments in the field of numerical relativity, are allowing access to extreme (stro...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
Gravitas
Black holes: gravitational engines of discovery
2M€
Cerrado
PID2020-114915GB-I00
PROBANDO LA GRAVEDAD RELATIVISTA CON ESPECTROSCOPIA DE AGUJE...
66K€
Cerrado
EUR2020-112157
AGUJERO NEGROS EN CUMULOS ESTELARES A TRAVES DEL TIEMPO COSM...
60K€
Cerrado
LHCtoLISA
Precision Gravity From the LHC to LISA
2M€
Cerrado
FPA2013-41042-P
ANALISIS DE DATOS DE ONDAS GRAVITACIONALES Y SIMULACIONES DE...
169K€
Cerrado
ThorGW
Testing the horizon of black holes with gravitational waves
174K€
Cerrado
Información proyecto NewFunFiCO
Duración del proyecto: 51 meses
Fecha Inicio: 2022-09-28
Fecha Fin: 2026-12-31
Líder del proyecto
UNIVERSIDADE DE AVEIRO
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
276K€
Descripción del proyecto
The celebrated detection of gravitational waves (GWs), the first observation of horizon scale structure of a black hole (BH) together with the developments in the field of numerical relativity, are allowing access to extreme (strong and dynamical) gravity configurations, both observationally and theoretically, making our time a golden epoch for studying extreme gravitational systems.
In parallel, families of exotic but theoretically sound models of BHs and horizonless compact objects in the presence of new fundamental fields, or alternative theories of gravity have been constructed, to a large extent numerically. These can be submitted to computational experiments, to test their dynamics, and compared against observations, to address the issue of degeneracy in the theoretical interpretations of strong gravity data or even detect putative better fits to the data.
At the meeting point between these two developments lies the promise of new fundamental physics, a deeper understanding of BHs and neutron stars, unveling the nature of dark matter and dark energy. Delivering on this promise requires a synergetic endeavour that must bring together different groups and competences.
This project creates a multi-connected team with different and complementary scientific expertises - on BHs, neutron stars and exotic compact objects -, their phenomenology - GWs, lensing and astrophysical environments - and the techniques necessary to extract the latter from the former for comparison with observations, including constructing and evolving solutions of non-standard compact objects with numerical methods, building GW libraries, lensing images and performing data/Bayesian analysis and parameter estimation.
The team includes members of the LIGO-Virgo-Kagra and Event Horizon Telescope collaborations, providing a direct connection to observations, and will explore deep learning frameworks to face the key challanges of model classification and data augmentation.