Functional tumour genomics using metabolomic profiling
Metabolite profiling, as demonstrated by the host laboratory, has the power to discriminate single gene alterations and to identify metabolite biomarkers that potentially can function as surrogates for the genetic event. In additi...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
METABOp53
Metabolic functions of p53 in non cancer pathologies
2M€
Cerrado
Metabonomics in NETs
Evolving landscape of neuroendocrine tumor disease Predicti...
209K€
Cerrado
PRE2020-092083
Genomic, proteomic, transcriptomic alterations in growth con...
99K€
Cerrado
PID2021-126709OA-I00
ESTUDIOS METABOLOMICOS IN VIVO PARA EL DESCUBRIMIENTO Y VALI...
157K€
Cerrado
METACANCER
Identification and validation of new breast cancer biomarker...
4M€
Cerrado
SAF2017-89229-R
CONTRIBUCIONES DE LA METABOLOMICA POR RMN A LA CLASIFICACION...
169K€
Cerrado
Información proyecto FUTUGEMET
Líder del proyecto
CANCER RESEARCH UK LBG
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
181K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Metabolite profiling, as demonstrated by the host laboratory, has the power to discriminate single gene alterations and to identify metabolite biomarkers that potentially can function as surrogates for the genetic event. In addition they have shown that pattern recognition within NMR-derived metabolome profiles from gene deletion mutants can be used as a functional genomics tool to confirm the identity of modules or co-sets predicted by genome-scale metabolic models, demonstrating how metabolomic data can be used to understand the structure of metabolic networks, relating the metabolome to the genome. The aim of this project is to define the metabolic profiles associated with the expression of specific genes in tumour cells. This will allow us to define the metabolic network structure in tumour cells (and how it is related to expression of different oncogenes and tumour suppressor genes), and to identify metabolites that are correlated with common genetic changes in cancer cells. This should allow us to design new molecular imaging methods for detecting tumours and their response to treatment. Moreover, the proposed work will also allow us to understand the effects of specific drugs, by allowing us to monitor the modulation of the activity of specific drug targets and also by identifying off-target drug effects.