Functional Links in Avian Microbial Macrophyte and INvertebrate Greenhouse Ga...
Functional Links in Avian Microbial Macrophyte and INvertebrate Greenhouse Gas Output Stimulation
Mounting evidence suggests that aquatic invertebrate activity can enhance wetland sediment greenhouse gas (GHG) flux. However, waterbirds have been shown to reduce densities of aquatic invertebrates, which could potentially modera...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
EEBB-I-12-05546
EL BINOMIO FITOPLANCTON-MACROFITOS SUMERGIDOS. SUS RESPUESTA...
2K€
Cerrado
TED2021-129873B-I00
PAPEL DEL CICLO BIOGEOQUIMICO DEL NITROGENO EN DESENCADENAR...
121K€
Cerrado
CGL2014-52362-R
HUMEDALES Y EMBALSES COMO REGULADORES DE LOS CICLOS DEL CARB...
175K€
Cerrado
PID2019-110603RB-I00
CONTROL AMBIENTAL DE LA ACTIVIDAD MICROBIANA EN ECOSISTEMAS...
226K€
Cerrado
CTM2008-04453
PUNTOS DEBILES PARA EL CONOCIMIENTO DEL CICLO DEL CARBONO EN...
424K€
Cerrado
TED2021-129591B-C33
VALORIZACION DE LAS ALGAS ACUMULADAS EN LAS ORILLAS DEL MAR...
98K€
Cerrado
Información proyecto FLAMMINGGOS
Duración del proyecto: 40 meses
Fecha Inicio: 2018-04-18
Fecha Fin: 2021-09-13
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Mounting evidence suggests that aquatic invertebrate activity can enhance wetland sediment greenhouse gas (GHG) flux. However, waterbirds have been shown to reduce densities of aquatic invertebrates, which could potentially moderate GHG flux. Alternatively, carbon (C), nitrogen (N), and phosphorus (P) subsidies in waterbird guano may stimulate microbial activity. These bottom-up forces may stimulate GHG flux and dampen the top-down effects of predation. For the proposed study, a network of long-term waterbird exclosure plots will be established within the Doñana Natural Space in southern Spain. 144 experimental plots will manipulate the presence of waterbirds in vegetated and unvegetated wetlands, and will create a gradient in C, N, and P (guano) inputs, with the following six treatments: X = no birds present, W = waterfowl present, and F = flamingos + waterfowl present. Controlled laboratory and outdoor mesocosm studies will further examine the interacting stimulatory effects of waterbird guano and benthic invertebrates on GHG flux. Responses compared among treatments will include benthic and water-air fluxes of nitrous oxide, methane, and carbon dioxide, invertebrate densities and biomass, and abundances of microbial genes that are functionally linked to GHG flux (e.g. nirK, nirS, nosZ). Environmental data will be incorporated into predictive GHG flux models, including benthic invertebrate density and biomass; macrophyte density and biomass; water and sediment C, N and P content; and temperature and dissolved oxygen. By manipulating waterbird and invertebrate densities, this will be the first manipulative field study to simultaneously test the hypotheses that benthic invertebrates stimulate GHG emissions, and that higher trophic levels (waterbirds) exert both top-down and bottom-up influence on this process. This represents a new and potentially transformative line of inquiry into the roles of multiple trophic levels in regulating global wetland GHG flux.