Functional analysis of TSPAN14 as a genetic risk factor for Alzheimer’s disease
Alzheimer’s disease (AD) is the most prevalent deadly neurodegenerative disorder for which no effective treatment exists as of today. Therefore, there is an urgent need to better understand the molecular mechanisms behind AD in or...
Alzheimer’s disease (AD) is the most prevalent deadly neurodegenerative disorder for which no effective treatment exists as of today. Therefore, there is an urgent need to better understand the molecular mechanisms behind AD in order to develop more effective treatments against this complex disease. Recent genetic findings have highlighted several AD-associated genes, many of which are preferentially expressed in microglia in the brain. One of these is tetraspanin 14 (TSPAN14), whose physiological function in the brain is not yet understood. Recent studies suggest that TSPAN14 may act as a functional regulator of ADAM10, a transmembrane protease that cleaves multiple substrates in the brain including the AD-associated protein TREM2. Full-length TREM2 is essential for the phagocytic activity of microglia and its cleavage by ADAM10 results in loss of function. The central aim of the TSPAN14-AD project is to understand how TSPAN14 controls molecular pathways involved in AD, by focusing on proteolysis and function of TREM2. Specifically, we hypothesize that TSPAN14 increases AD risk by modulation of TREM2 cleavage and microglial phagocytosis. The 3 objectives of TSPAN14-AD are to: (1) determine whether AD-protective TSPAN14 alternative splicing variants result in reduced TSPAN14 protein expression; (2) elucidate whether reduced TSPAN14 expression results in decreased ADAM10 cell surface expression; (3) assess whether loss of TSPAN14 reduces TREM2 cleavage and enhances phagocytic activity of microglia. To accomplish this, a combination of biochemical, molecular, and proteomic techniques will be used within both in vitro and in vivo models, including human induced pluripotent stem cell (iPSC)-derived microglia and post-mortem human brain tissue. Outcomes of the project have the potential to fill in a large gap in our current understanding of molecular mechanisms leading to AD pathogenesis and may provide insight into novel therapeutic targets for AD and related disorders.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.