FIRST will deliver key enabling technologies for combustion emission reduction by developing improved design tools and techniques for modelling and controlling fuel sprays and soot.
Aviation’s environmental impact must be reduced...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
TED2021-131618B-C21
MODELADO DE COMBUSTIBLES DE AVIACION SOSTENIBLES PARA BAJAS...
144K€
Cerrado
TRA2017-89139-C2-1-R
DESARROLLO DE MODELOS DE COMBUSTION Y EMISIONES HPC PARA EL...
92K€
Cerrado
2G-CSAFE
Combustion of Sustainable Alternative Fuels for Engines used...
2M€
Cerrado
PID2019-109952RB-I00
CONTRIBUCION A LA AVIACION SOSTENIBLE A TRAVES DE LA OPTIMIZ...
184K€
Cerrado
TRA2017-89139-C2-2-R
IMPLEMENTACION Y VALIDACION DE MODELOS HPC DE COMBUSTION Y E...
71K€
Cerrado
AHEAD
Advanced Hybrid Engines for Aircraft Development
3M€
Cerrado
Información proyecto FIRST
Líder del proyecto
ROLLSROYCE PLC
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
7M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
FIRST will deliver key enabling technologies for combustion emission reduction by developing improved design tools and techniques for modelling and controlling fuel sprays and soot.
Aviation’s environmental impact must be reduced to allow sustainable growth to benefit European industry and society. This is captured in ACARE’s 2020 goals of reducing CO2 by 50%, NOx by 80% and in SRA1/2 proposed reductions in soot and development of alternative fuels.
CFD tools are essential to design combustors for emissions, soot, thermo-acoustic noise, flame stability, cooling and the outlet temperature profile. The two most significant gaps in today’s CFD capability are fuel injector spray and soot modelling.
The fuel injector is critical to the design of low emission combustors. By understanding and controlling the complex physics of fuel atomisation and mixing, the emissions performance can be directly improved. CFD simulations have for many years relied upon over-simplistic definition of the fuel spray. The availability of methods developed in the automotive industry and faster computers make their application to aero-engines timely. The FIRST project will deliver a step change in the detail and accuracy of the fuel spray boundary conditions; through novel physics based modelling techniques, advanced diagnostic measurements and the derivation of sophisticated correlations.
CFD computations of the combustion system also provide the information needed to allow soot emissions to be controlled and minimised. These calculations require the improved fuel spray boundary condition described but also need higher fidelity physical and chemical models describing the soot production and consumption processes. FIRST will deliver improved CFD soot models, enabling the reduction of soot in aero-engine combustors.
The design of future alternative fuels will be enhanced by FIRST by performing predictions and measurements of both fuel sprays and soot across a number of alternative fuels.