Frontiers in nanophotonics integrated plasmonic metamaterials devices
Photonic methamaterials have unique optical properties not available in natural materials. The key question is how to integrate metamaterials within nanophotonics circuitry to harness all the advantages they offer in controlling l...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Información proyecto iPLASMM
Líder del proyecto
KINGS COLLEGE LONDON
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
2M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Photonic methamaterials have unique optical properties not available in natural materials. The key question is how to integrate metamaterials within nanophotonics circuitry to harness all the advantages they offer in controlling light on the nanoscale. iPLANET will develop a plasmonic nanorod metamaterial platform for applications covering the entire spectral range from mid-IR through telecom to visible and UV, be CMOS compatible and monolithically integratable in photonic circuitry. Using the unique optical properties of nanorod-based metamaterials, a very high density of photonic states can be achieved, essential for controlling light emission, scattering and nonlinearity in the nanophotonic environment. The project will challenge the frontiers of nanophotonics through the use of these specific to metamaterial properties to achieve integrated nonlinear photonic components with reduced size and energy consumption and integrated bio- and chemical sensors with increased sensitivity, multi-parameter sensing in a broad spectral range, all on the same metamaterial platform. This will be a transformative development for the applications of nanophotonics in optical information processing in integrated photonic circuits and for the realization of integrated sensors for point-of-care devices, security and environmental monitoring. The success of the project will unlock the potential of metamaterials for the improvement of the real-world photonic devices and provide insight into physical phenomena which are vital for various areas of optical physics and sensing. This will probably be the first demonstration of commercially-viable application of metamaterials. It will transform the areas of both nanophotonics and metamaterials and consolidate and enhance the European leadership in this field.