Frontiers for multi scale computational fluid dynamics
"Computational fluid dynamics remains challenged with the complexity of fluid motion on all scales from atmospheric phenomena down to flows in micro- and nano-devices. The lattice Boltzmann method (LBM) has been conceived to repla...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
PonD
Particles on Demand for Multiscale Fluid Dynamics
2M€
Cerrado
STIMULUS
Space Time Methods for Multi Fluid Problems on Unstructured...
918K€
Cerrado
ADDECCO
Adaptive Schemes for Deterministic and Stochastic Flow Probl...
1M€
Cerrado
FIS2009-08821
ESTRUCTURAS COHERENTES Y TURBULENCIA EN DOMINIOS SIMPLES
119K€
Cerrado
T2T-VHF
Transition to Turbulence of Volumetrically Heated Flows
273K€
Cerrado
FastFlowSim
Fast particle based time integrator for incompressible flows...
195K€
Cerrado
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
"Computational fluid dynamics remains challenged with the complexity of fluid motion on all scales from atmospheric phenomena down to flows in micro- and nano-devices. The lattice Boltzmann method (LBM) has been conceived to replace the conventional methods of computational fluid dynamics. Due to its computational efficiency and simplicity in handling complex geometries, LBM was only partly successful in simulating incompressible flows. However, it faced stiff challenges in other domains of fluid dynamics due to low isotropy of the lattice and lack of stability. Recently, a new generation of entropic lattice Boltzmann models (ELBM) restored second law of thermodynamics in the lattice Boltzmann kinetics and made lattice Boltzmann unconditionally stable. Armed with new higher-order entropic lattices, ELBM project will open up high Reynolds number flows, compressible flows, multi-phase and micro flows and other domains for fast and efficient simulations. New ELBM models retain all the advantages of LBM in terms of efficiency, parallelism, and handling of complex geometries. This project will serve as unique source of largest possible benchmark simulations and engineering applications in fluid dynamics; thus challenging or even replacing the most advanced methods of computational fluid dynamics as well as particle methods in micro flows."