Innovating Works

BottomUp3D

Financiado
From the bottom up a physico chemical approach towards 3D nanostructures with a...
From the bottom up a physico chemical approach towards 3D nanostructures with atomic scale control It is a long held dream in nanoscience to synthesize materials from the bottom-up with atomic-level control of structure and properties, yet the fabrication of nanoelectronics still relies completely on top-down processing. Innova... It is a long held dream in nanoscience to synthesize materials from the bottom-up with atomic-level control of structure and properties, yet the fabrication of nanoelectronics still relies completely on top-down processing. Innovative schemes for bottom-up fabrication will be realized in this project by developing approaches for area-selective atomic layer deposition (ALD), a technique that has the potential to become the new paradigm of bottom-up processing because of its atomic-scale control. Current work on area-selective ALD focuses on the processing of planar substrates, while emerging developments in nanoelectronics and quantum computing require the fabrication of 3D nanostructured devices. Building on recent innovations in my lab, a multidisciplinary approach to area-selective ALD will be employed which combines vapor-phase dosing of inhibitor molecules as a chemical method and the exposure to directional ions from a plasma as a physical method. Fundamental understanding of the mechanisms of chemical inhibition will be acquired, and a new strategy for physical removal of defects will be developed. These methods will be employed on 3D substrates to enable the fabrication of future device structures. By bringing inhibitor molecules and the directional nature of plasma ions together, new flavors of selective processing will be invented including anisotropic or topographically-selective ALD, which opens up a new direction for the field of area-selective ALD. The synergy between my extensive expertise with in-situ reaction mechanism studies and plasma processing, my leading role in the field of area-selective ALD, and the group’s unique facilities for atomic-scale processing, offers a stepping stone to the long-awaited shift from top-down to bottom-up processing. Moreover, this work will allow for the scaling of electronics down to the single-nanometer level. ver más
31/12/2025
2M€
Duración del proyecto: 64 meses Fecha Inicio: 2020-08-10
Fecha Fin: 2025-12-31

Línea de financiación: concedida

El organismo H2020 notifico la concesión del proyecto el día 2020-08-10
Línea de financiación objetivo El proyecto se financió a través de la siguiente ayuda:
ERC-2020-STG: ERC STARTING GRANTS
Cerrada hace 5 años
Presupuesto El presupuesto total del proyecto asciende a 2M€
Líder del proyecto
TECHNISCHE UNIVERSITEIT EINDHOVEN No se ha especificado una descripción o un objeto social para esta compañía.
Perfil tecnológico TRL 4-5