Innovating Works

Microns2Reefs

Financiado
From microns to reefs mechanistic insights into coral biomineralisation and the...
From microns to reefs mechanistic insights into coral biomineralisation and the fate of coral reefs Coral Reefs are under threat from climate change, pollution and other local and global anthropogenic disturbances. Microns2Reefs will go beyond the state of the art by providing the mechanistic understanding needed to accurately p... Coral Reefs are under threat from climate change, pollution and other local and global anthropogenic disturbances. Microns2Reefs will go beyond the state of the art by providing the mechanistic understanding needed to accurately predict their fate given the multifaceted and multifactorial anthropogenic threats they face. Coral reefs provide many ecosystem functions, from coastal defence to sustaining fisheries. These, and many others, critically depend on the 3D framework of the reef made from the skeletons of Scleractinian corals. The coral biomineralisation tool kit is known but key questions remain: what biomineralisation tools are most important? what and how do environmental and biological factors limit and influence biomineralisation? how does the environmental sensitivity of coral biomineralisation determine the diversity, resilience, and survivability of individual colonies and the entire reef? The answers to these questions are key to inform the strategies needed to effectively manage these diversity hotspots and are placed into sharp focus by recent coral mass mortality events and the rapidity of anthropogenic climate change. Microns2Reefs will produce a step change by integrating a raft of new and innovative scientific techniques to provide a mechanistic understanding of coral biomineralisation and hence coral reef resilience. Microns2Reefs has four objectives: 1) to develop a novel multimodal imaging technique to reconstruct the nature of the calcifying fluid and the biomineralisation process in 3D; 2) use this to build a detailed model of coral biomineralisation; 3) develop a mechanistic understanding of the relationship between environment and skeleton construction; 4) quantify the future resilience of corals and coral reefs in the face of multiple anthropogenic stressors. Microns2Reefs is only now feasible due to recent analytical developments, exchange of knowledge and ideas from biomedical sciences, and advances in geochemistry and coral genomics. ver más
31/07/2026
3M€
Duración del proyecto: 72 meses Fecha Inicio: 2020-07-07
Fecha Fin: 2026-07-31

Línea de financiación: concedida

El organismo H2020 notifico la concesión del proyecto el día 2020-07-07
Línea de financiación objetivo El proyecto se financió a través de la siguiente ayuda:
ERC-2019-ADG: ERC Advanced Grant
Cerrada hace 5 años
Presupuesto El presupuesto total del proyecto asciende a 3M€
Líder del proyecto
UNIVERSITY OF SOUTHAMPTON No se ha especificado una descripción o un objeto social para esta compañía.
Perfil tecnológico TRL 4-5