From mechanical control to shape shifting in supramolecular biomaterials to guid...
From mechanical control to shape shifting in supramolecular biomaterials to guide stem cell fate
The biochemical and biophysical cues of the stem cell environment that act in a concerted and spatiotemporal manner lead to the formation of the 200 cell types and organs of the human body, but how this precisely occurs remains un...
The biochemical and biophysical cues of the stem cell environment that act in a concerted and spatiotemporal manner lead to the formation of the 200 cell types and organs of the human body, but how this precisely occurs remains unclear and it is necessary to guide their production for use in the biomedical area. Standard differentiation protocols in vitro mimic known stages in development by the timed addition of biochemical cues on 2D substrates, however these protocols lack the complexity of the 3D natural extracellular matrix (ECM), with its mechanical character that evolves in time. Supramolecular materials can recapitulate the structural and dynamic character of the ECM being based on non-covalent interactions. Moreover, as I have shown, their mechanical soft character can mimic embryonic microenvironment for induced pluripotent stem cell (iPSC) culture but renders them unable to mimic stiff and tough tissues. Double networks using covalent polymers have demonstrated to achieve such mechanical properties, however these materials lack the cytocompatibility for use in 3D cell culture. In this proposal, I will synthesize hybrid covalent-supramolecular polymer networks that use biocompatible chemical and light-activated ligation approaches to apply them to guide the fate of iPSCs to cardiomyocytes by controlling their mechanical properties in time. I will exploit the unique properties of these double networked materials to interface them with biomechanical devices, and as an actuatable culture platform by 3-D printing a miniature beating heart ventricle. These advanced culture platforms based on hybrid-covalent supramolecular materials that go from soft to stiff and tough in time and space with shifting-shapes, with the potential to decouple the presentation of bioactive cues in an integrated manner, will provide uncharted opportunities to understand the spatiotemporal evolution of active and passive mechanical cues in development from cell to organ.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.