"Recent years have seen the blossoming of multi-messenger astrophysics where gravitational waves, photons and neutrinos provide complementary views on cosmic explosions involving some of the Universe’s most enigmatic objects, name...
"Recent years have seen the blossoming of multi-messenger astrophysics where gravitational waves, photons and neutrinos provide complementary views on cosmic explosions involving some of the Universe’s most enigmatic objects, namely neutron stars and black holes. The first observation of a neutron star merger via both gravitational waves and, days later, an electromagnetic flash called ""kilonova"" enabled huge scientific leaps forward and was therefore celebrated as ""2017 Breakthrough of the Year"". Multi-messenger astrophysics has an enormous potential to solve many longstanding puzzles such as the origin of the heaviest elements or the nature of the densest matter in the Universe, provided that we understand how the different messengers are physically connected. The gravitational wave and electromagnetic emission stages, however, involve vastly different length and time scales and completely different physical processes. Therefore, currently strong assumptions need to be made how both stages are actually physically connected. On the verge of this transformational era of physics, I propose to calculate for the first time the evolution from the inspiral (milliseconds before the merger) to the time after the kilonova (months later) within a common simulation framework. This will become possible via the novel computational methodology that I have recently developed: the world-wide first Lagrangian hydrodynamics code that also consistently solves Einstein's equations. Compared to conventional Numerical Relativity codes, my new development has major advantages in evolving the merger ejecta which finally cause the kilonova. This project will provide for the first time detailed physical structures of neutron star merger remnants and the first one-to-one mapping between the physics of the merger and the gravitational wave, neutrino and electromagnetic signals. This will present a major breakthrough for both the nuclear astrophysics and the multi-messenger communities."ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.