From GWAS to functional studies Tackling the complex nature of brain disorders
Genome-wide association studies (GWAS) of unprecedented sample size have recently provided robust insight into the polygenic architecture of many different brain disorders. Despite this exciting potential, GWAS results have rarely...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
SAF2016-80595-C2-1-P
GENES CAUSALES DE ESCLEROSIS MULTIPLE DE GWAS INTERNACIONAL...
97K€
Cerrado
SAF2011-29239
VARIANTES GENETICAS RARAS EN LA ENFERMEDAD DE PARKINSON: APR...
109K€
Cerrado
PID2019-104700GA-I00
TAXONOMIA DE LA UNION DE FACTORES DE TRANSCRIPCION EN EL GEN...
155K€
Cerrado
GENOVAR
Sequence based strategies to identify genetic variation asso...
1M€
Cerrado
IMAGENE
Characterizing Function Genetic Variants Linking Immunity an...
258K€
Cerrado
SAF2009-11491
ESCLEROSIS MULTIPLE: INTERACCIONES GEN-GEN EN LOS ESTUDIOS D...
149K€
Cerrado
Información proyecto GWAS2FUNC
Duración del proyecto: 73 meses
Fecha Inicio: 2019-07-25
Fecha Fin: 2025-08-31
Líder del proyecto
STICHTING VU
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
2M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Genome-wide association studies (GWAS) of unprecedented sample size have recently provided robust insight into the polygenic architecture of many different brain disorders. Despite this exciting potential, GWAS results have rarely translated into mechanistic disease insight. This is because the detected genetic effects are small and numerous, and hardly ever directly actionable for functional follow-up. In addition, the polygenic nature of brain disorders comes with large genetic heterogeneity, where different patients with the same disorder may carry completely different combinations of genetic risk variants, possibly corresponding to different etiological mechanisms, requiring different treatment regimens. To benefit from GWAS, extensive biological interpretation and insight into genetic heterogeneity is needed. In this ERC I will develop much needed tools for (i) extensive biological interpretation at cellular resolution and (ii) assessing genetic heterogeneity, both aimed at formulating hypotheses that take into account the polygenic nature of brain disorders and can be tested in functional experiments. I will apply the developed tools to a wide range of brain-related traits, providing ample starting points for functional follow-up. As a proof-of-concept I will test the viability of two neuroscientific approaches (iPSC and DREADDs) for functional follow-up of GWAS results. First, I will conduct scRNA sequencing and electrophysiological assessments on iPSC derived neurons and astrocytes from genetically selected (schizophrenia) patients and controls. Second, I will use in vivo chemogenetic manipulation to target specific cell types that have been implicated by GWAS (for insomnia). The primary goal of this proposal is to bridge the gap between GWAS and function. The results will facilitate the translation of GWAS findings for brain disorders into functional mechanisms that are biologically important in disease pathogenesis and, ultimately, treatment design.