Freestanding energy-to-Hydrogen fuel by water splitting using Earth-abundant mat...
Freestanding energy-to-Hydrogen fuel by water splitting using Earth-abundant materials in a novel, eco-friendly, sustainable and scalable photoelectrochemical Cell system
The FreeHydroCells project aims to create a new photoelectrochemical system capable of clean, efficient solar-to-chemical energy conversion, with hydrogen gas storing the chemical energy. The system would mimic the solar-energy ab...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
FreeHydroCells
Freestanding energy-to-Hydrogen fuel by water splitting usin...
4M€
Cerrado
TED2021-129876B-I00
FOTOCATALIZADORES HIBRIDOS PARA LA PRODUCCION DE HIDROGENO P...
167K€
Cerrado
ENE2010-21198-C04-01
CONVERSION Y ACUMULACION DE ENERGIA SOLAR EN HIDROGENO
88K€
Cerrado
WO for solar fuels
Integrating molecular water oxidation catalysts with semicon...
183K€
Cerrado
TED2021-132697B-I00
SEMICONDUCTORES INORGANICOS INNOVADORES Y CELULAS FOTOELECTR...
185K€
Cerrado
SECANS
Solar to Chemical Energy Conversion with Advanced Nitride S...
2M€
Cerrado
Información proyecto FreeHydroCells
Duración del proyecto: 40 meses
Fecha Inicio: 2022-10-21
Fecha Fin: 2026-02-28
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The FreeHydroCells project aims to create a new photoelectrochemical system capable of clean, efficient solar-to-chemical energy conversion, with hydrogen gas storing the chemical energy. The system would mimic the solar-energy absorption potential of a leaf by arraying cascades of nanometre thick semiconducting materials as buried pn-junctions that, when submerged in water and exposed to sunlight, are capable of freestanding photoelectrochemical water splitting. A number of technological challenges restrict the cost-effective efficiency of clean, green, solar-to-chemical hydrogen, state-of-the-art systems, making it commercially unattractive, and severely limiting hydrogen’s role in decarbonisation. However, the FreeHydroCells project proposes to leverage a number of advancements in thin film materials, devices, and processes to make similar breakthroughs in photoelectrochemical band-engineering for interconnected bands, defect minimisation, thin film thickness uniformity continuity to minimise drift-dominated transit times, carrier doping for high conductivity, carrier type selectivity and, importantly, preventing significant recombination of light-generated carriers by ensuring drift transport under multiple in-built electric fields. These breakthroughs would transform the transfer efficiency of solar-to-chemical energy via the carefully aligned redox potential and propel the photoelectrochemical water splitting reactions to morph solar energy into hydrogen bonds. The new materials system could be cost-effectively realised through modified delivery techniques of atomic layer deposition and chemical vapour deposition in manufacturing-compatible, large-area capable, equipment that is now common in commercial chip and solar cell processing technologies. FreeHydroCells’ multidisciplinary expertise is key to making this substantial science-to-technology leap: to verify a paradigm proof-of-concept for a self-driven system suitable for up-scaling and commercialisation.