Fragmentation in Turbulence Revisited Toward a universal theory for turbulent...
Fragmentation in Turbulence Revisited Toward a universal theory for turbulent emulsification
Droplets and bubbles are omnipresent in many environmental and industrial applications that involve atomization and emulsification processes, and the ability to control the size of these dispersed elements in turbulent multiphase...
ver más
31/12/2029
JOHANNES KEPLER UN...
2M€
Presupuesto del proyecto: 2M€
Líder del proyecto
UNIVERSITAT LINZ
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Fecha límite participación
Sin fecha límite de participación.
Financiación
concedida
El organismo HORIZON EUROPE notifico la concesión del proyecto
el día 2024-09-23
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Información proyecto FragTuRe
Duración del proyecto: 63 meses
Fecha Inicio: 2024-09-23
Fecha Fin: 2029-12-31
Líder del proyecto
UNIVERSITAT LINZ
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
2M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Droplets and bubbles are omnipresent in many environmental and industrial applications that involve atomization and emulsification processes, and the ability to control the size of these dispersed elements in turbulent multiphase flows is essential for design and optimization purposes. Despite the importance of the fragmentation of one fluid in another one by turbulent eddies, a universal theory applicable to a majority of the scenarios is still missing. Following the seminal work of Hinze on characterizing the size of the largest stable droplets in turbulence known as Kolmogorov-Hinze theory, I aim to revisit this concept with a novel deterministic approach through theoretical investigation, experimental characterization, and numerical simulation. In my recent contribution, I have presented a novel description for the Hinze scale based on the concept of enstrophy transport across the scales in turbulence, which could serve as the basis for my deterministic approach to studying turbulent emulsification. By providing the theoretical basis for sustained homogenous isotropic turbulent flows, I will measure the spectral rate of enstrophy transport rates by the vortex stretching, surface tension, and other relevant mechanisms in a drop-laden turbulent flow in the lab using tomographic PIV and shape reconstruction. Furthermore, by performing direct numerical simulation (DNS), I will explore the situations where experimentation may be limited such as highly-dense emulsifications and surfactant-laden environments. The simulations will provide a large dataset based on which we could generate a universal theory for emulsification in turbulent drop-laden and bubbly flows. The FragTuRe project revisits the fundamental understanding of turbulent fragmentation by a concept that has not been employed before and aims at generating a novel case-independent universal correlation for the Hinze scale that is essential in many engineering applications.