Four dimensional self assembly from peptides and DNA
Structural organisation in living systems is both dynamic (varies with time), and emergent (more than the sum of its parts). Different blends of these aspects can be said to contribute to all the uniquely impressive processes of c...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
PID2020-119306GB-I00
EMERGENCIA, PROPIEDADES Y APLICACIONES DE SISTEMAS FUNCIONAL...
145K€
Cerrado
DREAM
DNA-encoded REconfigurable and Active Matter
2M€
Cerrado
DNAmics
DNA mimetics Synthetic molecular duplexes
195K€
Cerrado
DYNAREP
Self Replication in Dynamic Combinatorial Libraries
169K€
Cerrado
CTQ2009-14366-C02-01
QUIMICA SUPRAMOLECULAR DE COMPUESTOS PSEUDOPEPTIDICOS: PREOR...
121K€
Cerrado
Información proyecto PepDNA-4D
Duración del proyecto: 27 meses
Fecha Inicio: 2019-04-12
Fecha Fin: 2021-07-28
Líder del proyecto
UNIVERSITY OF KENT
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
225K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Structural organisation in living systems is both dynamic (varies with time), and emergent (more than the sum of its parts). Different blends of these aspects can be said to contribute to all the uniquely impressive processes of cellular biology. In contrast, synthetic self-assembled chemical systems rarely express each of these properties, being largely based on single self-assembly systems (e.g. DNA hybridisation or metal coordination), and static (i.e. observed at its thermodynamic minimum). This Fellowship will combine the Fellow's skills in chemoenzymatic peptide synthesis with those of the Supervisor in combining complementary self-assembly systems to obtain emergent superstructures. These studies will result in the first instances of dynamic and emergent self-assembly in synthetic chemical systems.
To achieve this aim, we will perform chemoenzymatic polymerisation of peptides from the end of DNA backbones. Both units are capable of their own self-assembly - DNA through hybridisation, and peptides via secondary structures. In any 'static' snapshot of the system, the indirect interplay of DNA and peptide assembly will lead to highly unusual nanostructures. However, this work will go beyond, to measure the type and extent of self-assembly during the enzymatic polymerisation process using cutting edge techniques such as liquid-cell electron microscopy. The resultant systems will recapitulate the properties of living matter in these respects.
In the course of these studies, the Fellow's professional skills will be honed through mentorship, the practice of taking a leading role in research, and through training courses offered by the Host Institution. At the end of the Fellowship, he will be ideally placed to assume an independent academic position.