Form Independent Semantics for Natural Language Understanding
The project addresses the most important open problem in NLP, to develop a robust semantics that is invariant across different linguistic forms within a language and across languages, and embodies aspects of common-sense knowledge...
The project addresses the most important open problem in NLP, to develop a robust semantics that is invariant across different linguistic forms within a language and across languages, and embodies aspects of common-sense knowledge. It will be derived by machine-learning from machine-reading of vast amounts of text, using an existing state-of-the-art wide-coverage CCG semantic parser developed under previous ERC funding to the PI, initially to build traditional semantic analyses of sentences relating named entities.
Patterns of entailment across semantic expressions relating the same named entities will be then detected across other entities of the same types, to construct directed entailment graphs. Cliques within the graphs constitute paraphrases, and can be collapsed to a single cluster identifier. The paraphrase-clustered entailment graph can then be used to redefine the semantics delivered by the parser as conjunctions of entailed paraphrase clusters, to make it invariant under paraphrase and common-sense entailment, yet compatible with a traditional logical operator semantics. The semantics will be extended to a wide range of logical operators, including tense, modality, aspect, and voice, and to implicative and evidential verbs, light verbs, multi-word expressions, and idioms. The method will be applied to semantic parsing, machine translation, knowledge-graph query, and the construction of large knowledge graphs or semantic nets from text, using spreading activation to limit growth in costs of updating and querying the knowledge graph.
In the later stages of the project, the paraphrase-clustered entailment semantics will form the bassi for an incremental semantic parser, using a novel shift-reduce architecture proposed for CCG by the PI in 2000, guided by a modern neural network parsing model acting as a categorial ``supertagger'' and parser action model, for application to language modeling for the machine translation component.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.