"Several important partial differential equations (PDEs) arising in the mathematical description of physical phenomena exhibit transport features: physical quantities are advected by velocity fields that drive the dynamics of the...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
Lagrangian
A Lagrangian approach from conservation laws to line energy...
171K€
Cerrado
NONFLU
Non local dynamics in incompressible fluids
2M€
Cerrado
MAFRAN
Mathematical Frontiers in the Analysis of Many particle Syst...
2M€
Cerrado
FluFloRan
Mathematical analysis of fluid flows the challenge of rando...
2M€
Cerrado
MTM2013-44123-P
SISTEMAS DE ECUACIONES EN DERIVADAS PARCIALES NO LINEALES. P...
9K€
Cerrado
MTM2008-03255
EVOLUCION DE INTERFASES FLUIDAS Y FORMACION DE SINGULARIDADE...
56K€
Cerrado
Información proyecto FLIRT
Duración del proyecto: 77 meses
Fecha Inicio: 2015-12-10
Fecha Fin: 2022-05-31
Líder del proyecto
UNIVERSITAT BASEL
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
1M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
"Several important partial differential equations (PDEs) arising in the mathematical description of physical phenomena exhibit transport features: physical quantities are advected by velocity fields that drive the dynamics of the system. This is the case for instance for the Euler equation of fluid dynamics, for conservation laws, and for kinetic equations.
An ubiquitous feature of these phenomena is their intrinsic lack of regularity. From the mathematical point of view this stems from the nonlinearity and/or nonlocality of the PDEs. Moreover, the lack of regularity also encodes actual properties of the underlying physical systems: conservation laws develop shocks (discontinuities that propagate in time), solutions to the Euler equation exhibit rough and ""disordered"" behaviors. This irregularity is the major difficulty in the mathematical analysis of such problems, since it prevents the use of many standard methods, foremost the classical (and powerful) theory of characteristics.
For these reasons, the study in a non smooth setting of transport and continuity equations, and of flows of ordinary differential equations, is a fundamental tool to approach challenging important questions concerning these PDEs.
This project aims at establishing:
(1) deep insight into the structure of solutions of nonlinear PDEs, in particular the Euler equation and multidimensional systems of conservation laws,
(2) rigorous bounds for mixing phenomena in fluid flows, phenomena for which giving a precise mathematical formulation is extremely challenging.
The unifying factor of this proposal is that the analysis will rely on major advances in the theory of flows of ordinary differential equations in a non smooth setting, thus providing a robust formulation via characteristics for the PDEs under consideration. The guiding thread is the crucial role of geometric measure theory techniques, which are extremely efficient to describe and investigate irregular phenomena."