Fluctuating selection evolution and plasticity in random environments
Temporal environmental variation in natural systems includes a large component of random fluctuations, the magnitude and predictability of which is modified under current climate change. The need for predicting eco-evolutionary im...
Temporal environmental variation in natural systems includes a large component of random fluctuations, the magnitude and predictability of which is modified under current climate change. The need for predicting eco-evolutionary impacts of plastic and evolutionary responses to changing environments is still hampered by lack of strong experimental evidence. FluctEvol aims at shedding a new light on population responses to stochastic environments, and facilitating their prediction, using a unique combination of approaches. First, theoretical models of evolution and demography under a randomly changing optimum phenotype will be designed and analysed, producing new quantitative predictions. Second, statistical methodologies will be developed, and employed in meta-analyses of long-term datasets from natural populations. And third, large-scale and automated experimental evolution in stochastic environments will be carried out with the micro-alga Dunaliella salina, an extremophile that thrives at high and variable salinities. We will manipulate the magnitude and predictability of fluctuations in salinity, and use high-throughput phenotyping and candidate-gene sequencing to analyse the evolution of plasticity for traits involved in salinity adaptation in this species: glycerol and carotene content. We will thus combine the benefits of experimental evolution in microbes (short generations, ample replication) with a priori knowledge of ecologically relevant adaptive traits, allowing for hypothesis-driven experiments. The success of this project in increasing our predictive power about eco-evolutionary dynamics is warranted by the experience of the PI, at the interface between theoretical and empirical approaches. Our experiments will have relevance beyond academia, as we will modify through evolution the plasticity of traits (accumulation of energetic cell metabolites) that are direct targets for bioindustry, thus potentially overcoming current limitations in productivity.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.