Flows for Algae Growth: Uncovering the multi-scale dynamics of living suspension...
Flows for Algae Growth: Uncovering the multi-scale dynamics of living suspensions
Photosynthetic microalgae hold promise for the sustainable production of high-value products, bioplastics and biofuels. In bioreactors, suspensions of living, soft, and motile cells form an entirely new kind of fluids, which physi...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
INC-TU-2011-1126
Nuevas tecnologías aplicadas a microalgas para obtener produ...
93K€
Cerrado
RTI2018-101974-B-C21
REACTORES ELECTROQUIMICOS MICROBIANOS BASADOS EN ELECTRODOS...
163K€
Cerrado
PID2020-112709RB-C22
ESTRATEGIAS DE MODELADO Y CONTROL HIBRIDO PARA LA PRODUCCION...
129K€
Cerrado
CTQ2013-48995-C2-2-R
NUEVAS ENZIMAS Y PRODUCTOS MICROBIANOS PARA LA BIOMODIFICACI...
165K€
Cerrado
TED2021-130891B-I00
MEJORA DE LA PRODUCCION DE PRECURSORES DE BIOPLASTICOS (PHAS...
167K€
Cerrado
RTC-2015-3825-5
PRODUCCION DE BIOPRODUCTOS A TRAVÉS DE RESIDUOS ALIMENTARIOS
107K€
Cerrado
Información proyecto Flow4Algae
Duración del proyecto: 68 meses
Fecha Inicio: 2022-04-19
Fecha Fin: 2027-12-31
Descripción del proyecto
Photosynthetic microalgae hold promise for the sustainable production of high-value products, bioplastics and biofuels. In bioreactors, suspensions of living, soft, and motile cells form an entirely new kind of fluids, which physiologically respond to the environment and the flow conditions. Fundamental knowledge of the flow dynamics of living suspensions is now urgently needed to develop new flow technologies for bioreactors. This project lays out an ambitious multi-scale experimental plan to establish the foundations of the fluid dynamics of living suspensions by revisiting three textbook aspects of flow: (1) turbulence, (2) the dynamics at solid and free interfaces and (3) the response to shear. This endeavour faces a new paradigm in complex flows, where fluid dynamics and cell physiology on different length scales, are deeply entwined. I will tackle this problem with a unique set of multi-scale experiments combining advanced flow diagnostics and rheology tools with new microfluidics and 3-D cell tracking recently developed in my group. These experiments will yield the first tracking measurements of living microalgae in a turbulent flow, and reveal what happens when motile cells on the small scale meet the turbulence cascade. Tracking experiments will provide new insight into the interactions of microalgae with free and textured surfaces, and, combined with rheology, show how shear flow affects cell motility and inversely how motility affects the response to shear of the suspension. Together, these experiments will uncover the interrelations between flow, cell physiology and growth, and determine how cell motility can be leveraged to optimize the turbulent mixing conditions in bioreactors, avoid biofilm formation and mediate cell harvesting.