Flows for Algae Growth: Uncovering the multi-scale dynamics of living suspension...
Photosynthetic microalgae hold promise for the sustainable production of high-value products, bioplastics and biofuels. In bioreactors, suspensions of living, soft, and motile cells form an entirely new kind of fluids, which physi...
ver más
Descripción del proyecto
Photosynthetic microalgae hold promise for the sustainable production of high-value products, bioplastics and biofuels. In bioreactors, suspensions of living, soft, and motile cells form an entirely new kind of fluids, which physiologically respond to the environment and the flow conditions. Fundamental knowledge of the flow dynamics of living suspensions is now urgently needed to develop new flow technologies for bioreactors. This project lays out an ambitious multi-scale experimental plan to establish the foundations of the fluid dynamics of living suspensions by revisiting three textbook aspects of flow: (1) turbulence, (2) the dynamics at solid and free interfaces and (3) the response to shear. This endeavour faces a new paradigm in complex flows, where fluid dynamics and cell physiology on different length scales, are deeply entwined. I will tackle this problem with a unique set of multi-scale experiments combining advanced flow diagnostics and rheology tools with new microfluidics and 3-D cell tracking recently developed in my group. These experiments will yield the first tracking measurements of living microalgae in a turbulent flow, and reveal what happens when motile cells on the small scale meet the turbulence cascade. Tracking experiments will provide new insight into the interactions of microalgae with free and textured surfaces, and, combined with rheology, show how shear flow affects cell motility and inversely how motility affects the response to shear of the suspension. Together, these experiments will uncover the interrelations between flow, cell physiology and growth, and determine how cell motility can be leveraged to optimize the turbulent mixing conditions in bioreactors, avoid biofilm formation and mediate cell harvesting.
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.