Flow-Reactor Coupled 3D Printing: Achieving Voxel-Level Control of Out-of-Equili...
Flow-Reactor Coupled 3D Printing: Achieving Voxel-Level Control of Out-of-Equilibrium Materials
Nature has optimized the properties of its building blocks by spatially varying hierarchical microstructures within complex form factors. Additive manufacturing techniques, in particular direct ink writing (DIW), are promising pat...
Nature has optimized the properties of its building blocks by spatially varying hierarchical microstructures within complex form factors. Additive manufacturing techniques, in particular direct ink writing (DIW), are promising pathways towards replicating these systems synthetically, leading to printed materials with tarilored materials properties. However, current DIW techniques do not offer access to out-of-equilibrium materials, greatly limiting printable microstructures. To overcome this limitation, a new DIW technique, termed FloR3D, will be developed in this project. By integrating an evolving chemical reaction into the printing process itself, this Flow-Reactor coupled 3D printing technique allows for out-of-equilibrium microstructures to be generated within the nozzle, which is subsequently trapped upon deposition. Through on-the-fly variations of the relative flow rates into the flow reactor, FloR3D will allow for voxel-level control of the material composition and microstructure, resulting in optimized and spatially-varied hierarchical structures. By incorporating a polymerization-induced microphase separation (PIMS) process, spinodally-decomposed bicontinuous microstructures, which was previously unachievable by DIW, will be printed. Printing these bicontinuous systems, commonly used in nature to exhibit structural coloration, will result in angular-independent structural colored materials with arbitrary form factor. Furthermore, by including photoresponsive monomers within the PIMS system and an in-situ UV source, the materials' refractive indices can be tuned independently of the microstructural feature size, resulting in materials with gradient and spatially-patterned optical properties. Ultimately, beyond the complex photonic materials produced in this proposal, the design of FloR3D can be broadened to incorporate a variety of other chemical reactions, leading to a new pathway towards free-form high-performance materials.ver más
06-11-2024:
IDAE Cadena de Valor...
Se ha cerrado la línea de ayuda pública: Ayudas a Proyectos para reforzar la Cadena de Valor de equipos necesarios para la transición a una economía de cero emisiones netas
05-11-2024:
Cataluña Gestión For...
Se abre la línea de ayuda pública: Gestión Forestal Sostenible para Inversiones Forestales Productivas para el organismo:
04-11-2024:
Doctorados industria...
Se ha cerrado la línea de ayuda pública: Formación de doctores y doctoras de las universidades del Sistema universitario de Galicia (SUG) en empresas y centros de innovación y tecnología para el organismo:
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.