Flow and Deformation of Cancer tumours near Yielding
The aim of this proposal is to understand when, how and why metastatic tumour cells detach from a tumour.
Often, primary tumours do not kill patients, but secondary tumours do. These so-called metastatic tumour cells disassociat...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
EIN2020-112291
COMPRENDER LA BIOFISICA DE LA CELULA METASTASICA PARA PREDEC...
10K€
Cerrado
BiCiCle
Biophysics of circulating tumor cells from single molecule...
165K€
Cerrado
HOLDING-HANDS
Holding hands cell cell junctions in breast cancer metastas...
2M€
Cerrado
BorderControl
Regaining control of cancer at biological borders
3M€
Cerrado
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The aim of this proposal is to understand when, how and why metastatic tumour cells detach from a tumour.
Often, primary tumours do not kill patients, but secondary tumours do. These so-called metastatic tumour cells disassociate from a primary tumour and, ultimately, prove fatal. Currently, we do not understand the fundamentals of the biophysical pathways and mechanisms of the metastasis of cancer, hampering medical intervention. I propose a multidisciplinary approach, combining engineering, chemistry, biophysics and cell biology to identify the mechanical pathways for the creation of metastatic cancer cells.
Biological cells in tissue are very densely packed, which locks them in place relative to their neighbours, a state referred to as jammed. The collective system of cells can become fluidised locally and flow when pushed or deformed. Even greater forces can make the entire tissue fluid-like, referred to as yielding. The crucial open questions are: how does tissue yield, and what universal physics underlies yielding?
I will develop a novel fundamental and predictive description of yielding in jammed living tissue to show:
1. How and when jammed living cells are driven to fluid-like state.
2. How confinement tunes the migration mode of cancer cells.
3. How yielding is related to the structural evolution of detached cells.
4. How critical scaling controls deformation and flow of living cells near yielding.
I will demonstrate that the distance to yielding governs the mechanical response in collective cell motion inside a tumour, and that exploiting critical scaling allows predicting the dynamics of cell detachment near yielding. The outcomes will significantly aid the treatment of cancer in the near future by bridging the gap between chemical and mechanical pathways of cancer metastasis. I have the required multidisciplinary track record. Moreover, preliminary experiments show highly promising results.