Flexible Dimensionality of Representational Spaces in Category Learning
Our visual system frequently has to classify complex, high dimensional inputs. A key learning objective of the brain is thus to identify diagnostic dimensions. Often, tasks require simultaneous consideration of multiple dimensions...
ver más
31/01/2030
RUHR-UNIVERSITAET...
2M€
Presupuesto del proyecto: 2M€
Líder del proyecto
RUHRUNIVERSITAET BOCHUM
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Fecha límite participación
Sin fecha límite de participación.
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Información proyecto DimLearn
Duración del proyecto: 63 meses
Fecha Inicio: 2024-10-07
Fecha Fin: 2030-01-31
Líder del proyecto
RUHRUNIVERSITAET BOCHUM
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
2M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Our visual system frequently has to classify complex, high dimensional inputs. A key learning objective of the brain is thus to identify diagnostic dimensions. Often, tasks require simultaneous consideration of multiple dimensions. Yet, learning many dimensions is computationally challenging. Here, I ask how the visual system tackles the challenge of learning high dimensional tasks. Some theories suggest that the brain does so by compressing dimensions, while others suggest dimensionality expansion. Yet, dimensionality compression and expansion both have advantages and disadvantages, and some studies find dimensionality compression where others find expansion. This raises the hitherto unanswered question what determines whether the brain invokes either of the two strategies. I hypothesize that instead of settling on a single strategy, the brain can reap the benefits of dimensionality compression and expansion by flexibly adjusting dimensionality to the task at hand. This entails the novel prediction of flexible neural codes that can switch dimensionality. To test this theory, I build on a multimodal, multispecies approach I have developed to study learning: using the paradigmatic case of visual category learning, I will establish the effect of task dimensionality on the structure of mental representations in behavior, I will determine how task dimensionality transforms neural activity using neuroimaging in humans, I will identify the neural building blocks of flexible dimensionality using electrophysiology and causal perturbations in rhesus monkeys, and I will unravel computational principles of flexible dimensionality with artificial neural networks. This combination of species and techniques is ideally suited to unravel the neural mechanisms for coping with high dimensional tasks. By elucidating the flexibility of mental and neural representations, I aim to reveal a hitherto unknown principle governing learning and stimulate future educational applications.