Flexible and switchable MOF-based composites for gas separation
Chemical separations are key processes in power plants and some industries like steel and iron manufacturing. To this end, energy-intensive thermal methods (e.g., distillation) are currently used making up the 45-55% of the overal...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Información proyecto DynaCOMP
Duración del proyecto: 38 meses
Fecha Inicio: 2023-06-22
Fecha Fin: 2026-08-31
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Chemical separations are key processes in power plants and some industries like steel and iron manufacturing. To this end, energy-intensive thermal methods (e.g., distillation) are currently used making up the 45-55% of the overall industrial energy input. Hence, a transition from thermal to adsorbent-based gas separation is indispensable to address the EC objective to become Europe as the first climate-neutral continent by 2050. However, the low selectivity of the traditional porous materials currently used in industry (e.g., zeolites, carbons), make them unsuitable to meet this goal. Dynamic MOFs, a class of hybrid crystalline materials of recent development, show reversible framework rearrangements which may occur as a reaction to an external stimulus, make them unique for gas separation. They selectively adapt their pore structure to a specific gaseous component in a mixture, yielding exceptional selectivity, but lacking stability under industrial conditions. The project entitled DynaCOMP: Flexible and switchable MOF-based composites for gas separation aims to develop shaping strategies for dynamic MOFs towards their implementation in gas separations of industrial and environmental interest (e.g., CO2/CH4, CO2/N2, C2H2/C2H4), and to determine the impact on framework dynamicity after supporting. The project is pioneer in preparing microporous robust flexible-rigid composites of dynamic MOF thin layers supported on traditional materials, investigating their spatio-temporal phenomena. In addition, the activities described in this project will be my first steps as an independent, self-sufficient, interdisciplinar researcher; and the outcome of the overall fellowship will place me in the leading position on a new and exciting research field, with potential to tackle 21st century sustainability challenges. This fellowship includes a 3-month secondment at Karlsruhe Institute of technology (KIT) to prepare composites using advanced LPE techniques.