Flame nanoengineering for antibacterial medical devices
Engineers in nanotechnology research labs have been quite innovative the last decade in designing nanoscale materials for medicine. However, very few of these exciting discoveries are translated to commercial medical products toda...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
TED2021-132122B-C22
DISEÑO Y SINTESIS DE NANODISPOSITIVOS BIOMOLECULARES SOSTENI...
151K€
Cerrado
NANO-PROTECT
Antimicrobial nano-coatings for hospital textiles to prevent...
165K€
Cerrado
PID2020-114347RB-C31
DISEÑO Y SINTESIS DE NANOPARTICULAS MOLECULARES Y BIOMOLECUL...
133K€
Cerrado
PTQ-08-03-08546
Implantación de un laboratorio de microbiología par estudios...
66K€
Cerrado
PID2021-122231NB-I00
MICROSCOPIA DE FLUORESCENCIA AVANZADA PARA ENTENDER Y MEJORA...
121K€
Cerrado
Información proyecto PROMETHEUS
Duración del proyecto: 71 meses
Fecha Inicio: 2017-09-21
Fecha Fin: 2023-08-31
Líder del proyecto
KAROLINSKA INSTITUTET
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
2M€
Descripción del proyecto
Engineers in nanotechnology research labs have been quite innovative the last decade in designing nanoscale materials for medicine. However, very few of these exciting discoveries are translated to commercial medical products today. The main reasons for this are two inherent limitations of most nanomanufacture processes: scalability and reproducibility. There is too little knowledge on how well the unique properties associated with nanoparticles are maintained during their large-scale production while often poor reproducibility hinders their successful use. A key goal here is to utilize a nanomanufacture process famous for its scalability and reproducibility, flame aerosol reactors that produce at tons/hr commodity powders, and advance the knowledge for synthesis of complex nanoparticles and their direct integration in medical devices. Our aim is to develop the next generation of antibacterial medical devices to fight antimicrobial resistance, a highly understudied field. Antimicrobial resistance constitutes the most serious public health threat today with estimations to become the leading cause of human deaths in 30 years.
We focus on flame direct nanoparticle deposition on substrates combining nanoparticle production and functional layer deposition in a single-step with close attention to product nanoparticle properties and device assembly, extending beyond the simple commodity powders of the past. Specific targets here are two devices; a) hybrid drug microneedle patch with photothermal nanoparticles to fight life-threatening skin infections from drug-resistant bacteria and b) smart nanocoatings on implants providing both osteogenic and self-triggered antibacterial properties. The engineering approach for the development of antibacterial devices will provide insight into the basic physicochemical principles to assist in commercialization while the outcome of this research will help the fight against antibiotic resistance improving the public health worldwide.