Fire in the land of ice Climatic drivers and feedbacks
2019 was the largest fire year since at least 1997 within the Arctic Circle, largely driven by Siberian fires. The arctic-boreal region stores about two atmospheres worth of soil carbon with 90 % currently locked in permafrost soi...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
CC-TOP
Cryosphere Carbon on Top of the Earth CC Top Decreasing U...
2M€
Cerrado
ARCTIC
Sources transport and degradation of permafrost derived o...
181K€
Cerrado
PAGE21
Changing Permafrost in the Arctic and its Global Effects in...
9M€
Cerrado
THAWSOME
THAWing permafrost the fate of Soil Organic Matter in the a...
2M€
Cerrado
GlacialLegacy
Glacial Legacy on the establishment of evergreen vs. summerg...
2M€
Cerrado
CGL2010-20672
RESPUESTA DE LAS TURBERAS A LOS CAMBIOS CLIMATICOS DEL PLEIS...
121K€
Cerrado
Información proyecto FireIce
Duración del proyecto: 67 meses
Fecha Inicio: 2021-02-01
Fecha Fin: 2026-09-30
Líder del proyecto
STICHTING VU
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
2M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
2019 was the largest fire year since at least 1997 within the Arctic Circle, largely driven by Siberian fires. The arctic-boreal region stores about two atmospheres worth of soil carbon with 90 % currently locked in permafrost soils, or perennially frozen ground. Fire releases parts of this carbon stock, which may induce a vigorous climate warming feedback.
FireIce will investigate feedbacks between climate warming and arctic-boreal fires by studying direct and longer-term carbon emissions from fires. FireIce will acquire highly needed observations of carbon emissions from Siberian forest and tundra fires. On top of the direct fire emissions, fires accelerate permafrost degradation, which leads to greenhouse gas emissions for several decades. Their sum may be substantially larger than the direct emissions, yet is largely unknown. In addition, FireIce will investigate the relative contribution of CH4 from smoldering fires to fire emissions. CH4 emissions represent a small, yet not well known, fraction of carbon emissions from fires, but CH4 is a more potent greenhouse gas than CO2.
FireIce will investigate feedbacks between climate warming and arctic-boreal fires by studying controls on fire size and ignition. Fire growth can be limited because of fuel or fire weather limitations. The fire weather control is sensitive to warming, which may lead to larger future fires. Lightning ignition is the main source of burned area in arctic-boreal regions, and more lightning is expected in the future. By combining contemporary controls on fire size and ignition, and future predictions of climate and lightning, FireIce will assess the vulnerability of arctic-boreal permafrost and soil carbon to increases in fire.
FireIce’s results will be relevant to evidence-based policy. FireIce’s innovations are conceptual, i.e. unstudied aspects of an emerging warming feedback loop, methodological, e.g. inclusion of novel spaceborne data, and geographical, i.e. a focus on Siberia.