Encryption and authentication have long been the workhorse of secure systems, but with the shift towards a decentralized mode of data processing, contemporary cryptographic tools such as secure computation and homomorphic encrypti...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
NTSC
New Techniques for Secure Computation
2M€
Cerrado
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Encryption and authentication have long been the workhorse of secure systems, but with the shift towards a decentralized mode of data processing, contemporary cryptographic tools such as secure computation and homomorphic encryption are taking center stage. Unlike their private-key counterparts, for which efficient candidate instantiations abound, these public-key types of primitives rely on a remarkably narrow base of computational hardness assumptions. Developing and understanding new assumptions upon which such primitives can be based is a necessity; the Fine-Grained Cryptography project aims to do exactly that.
Traditionally, cryptography has been based on problems for which there is a conjectured exponential complexity gap between the easy and hard directions; in contrast, we propose to investigate alternatives where the underlying gap is a sufficiently large polynomial. Practically speaking, fixed polynomial gaps should suffice for concrete security parameter instantiations. From a theoretical standpoint, they yield meaningful results even if P = NP -- a scenario in which most cryptography is (asymptotically) broken.
While a rich fine-grained complexity theory of moderately hard problems has been developed in the past two decades, its consequences to cryptography remain relatively unexplored. Moderately hard problems abound, and many of them enjoy algebraic and combinatorial structure. This, combined with the existence of tools for average-case analysis, points to their promise as a new base for advanced cryptographic applications.
Our initial focus will be on lower-level cryptographic primitives, such as one-way functions and public-key encryption. However, we expect our approach to also have direct impact on the feasibility and practical efficiency of higher-level cryptographic tasks, including advanced forms of encryption and even obfuscation.