Finding how Earthquakes And Storms Impact the Building of Landscapes
Unravelling how tectonics, climate and surface processes act and interact to shape the Earth’s surface is one of the most challenging unresolved issue in Earth Sciences. The foundations of modern quantitative geomorphology have be...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
POSTCOLD
Understanding the influence of sediment dynamics on postglac...
Cerrado
POSTCOLD
Understanding the influence of sediment dynamics on postglac...
130K€
Cerrado
BIA2015-67500-R
PERDIDA DE SUELO EN LADERAS BAJO CAMBIO CLIMATICO. PROCESOS...
144K€
Cerrado
ENSURE
Experimental and Numerical insight into Scale effects in gra...
225K€
Cerrado
GEO-EXCEL
GEO engineering EXChanges between Europe and Latin America
385K€
Cerrado
PID2021-123189NB-I00
PROCESOS GEOMORFOLOGICOS EN SISTEMAS SALINOS ACTIVOS. LEVANT...
218K€
Cerrado
Información proyecto FEASIBLe
Duración del proyecto: 85 meses
Fecha Inicio: 2018-10-18
Fecha Fin: 2025-11-30
Líder del proyecto
UNIVERSITE DE RENNES
No se ha especificado una descripción o un objeto social para esta compañía.
Presupuesto del proyecto
1M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Unravelling how tectonics, climate and surface processes act and interact to shape the Earth’s surface is one of the most challenging unresolved issue in Earth Sciences. The foundations of modern quantitative geomorphology have been built within the paradigm of steady-state landscapes responding to slow changes in climatic or tectonic conditions, mainly rainfall or uplift rate. Yet, recent results demonstrate that landscapes are rhythmed by (potentially extreme) storms and earthquakes. These perturbations catalyse geomorphological processes by triggering numerous landslides and lead to a prolonged and transient evolution of the landscape that dominate records of modern erosion. The FEASIBLe project therefore calls for a complete re-assessment of the role of short-term climatic and tectonic perturbations in shaping mountain landscapes and for a paradigm shift from steady-state to constantly perturbed landscapes. My ambition is to push forward our understanding of the short- to long-term dynamics of perturbed landscapes and in turn to unlock our ability to read landscapes in terms of earthquake and storm activity. To succeed in this endeavour, the FEASIBLe project will rely on the development of a new generation of landscape evolution model and of novel approaches to intimately monitor landscape heterogeneities and evolution in Taiwan, New-Zealand and Himalayas at high-resolution. The first work packages (WP1-2) will combine field-data analysis and numerical modelling to investigate landslide triggering and the post-perturbation sediment evacuation and landscape dynamics. I will then blend these elementary processes with a statistical description of climatic and tectonic perturbations in a new generation of landscape evolution model (WP3). This new model will be then applied to diagnose the geomorphological signature of fault seismogenic rheology (WP4) and to explore the role of post-glacial hot-moments of landscape dynamics on Quaternary landscape evolution (WP5).