Fetal Growth Restriction Perinatal Outcome Decision Support – improve perinatal...
Fetal Growth Restriction Perinatal Outcome Decision Support – improve perinatal outcomes in early-onset fetal growth restriction by rationalizing the decision of timing of delivery
Early-onset foetal growth restriction <32 weeks’ gestation is a severe pregnancy disorder that affects an estimated 15,000 European pregnancies annually and puts the babies at risk of severe morbidity and mortality. The underlying...
Early-onset foetal growth restriction <32 weeks’ gestation is a severe pregnancy disorder that affects an estimated 15,000 European pregnancies annually and puts the babies at risk of severe morbidity and mortality. The underlying mechanism of the disorder is placental insufficiency leading to failure to meet the foetal metabolic and respiratory demands (the first leading to the growth disorder, the latter leading to fetal demise). Birth of the foetus prevents further damage from the intrauterine environment, but exposes the neonate to the challenges of severe prematurity. When women are admitted to the hospital with this complication of pregnancy, the obstetrician monitors the progressive signs of placental insufficiency and decides to expedite birth when the risks of foetal demise outweigh the risks of prematurity. Currently, there is lacking evidence how to weigh all prognosticators in this balance, therefore it takes place in the black box of the obstetrician's mind.
In FGR PODS (Fetal Growth Restriction Perinatal Outcome Decision Support), I aim to develop and validate a ground-breaking decision support tool that will aid the obstetrician with objectively determining the optimal timing of birth. The decision support tool will integrate a combination of foetal and maternal prognosticators, and can be implemented in electronic patient charts. Provided as freeware, centres that have implemented the tool will feed back pseudonymized patient data in order to continuously refine the model. Also, within FGR PODS, I will perform innovative analysis (including machine learning) of fetal heart rate signals and of serially measured biomarkers to pick up placental respiratory failure. These studies will further our understanding of the foetal pathophysiological mechanisms resulting from placental insufficiency and will potentially identify targets for therapeutic interventions.ver más
02-11-2024:
Generación Fotovolt...
Se ha cerrado la línea de ayuda pública: Subvenciones destinadas al fomento de la generación fotovoltaica en espacios antropizados en Canarias, 2024
01-11-2024:
ENESA
En las últimas 48 horas el Organismo ENESA ha otorgado 6 concesiones
01-11-2024:
FEGA
En las últimas 48 horas el Organismo FEGA ha otorgado 1667 concesiones
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.