Ferrimagnet powered memristors for neuromorphic computing
Neuromorphic computing (NC) represents a groundbreaking approach to computation, drawing inspiration from the human brain to enhance power and efficiency compared to traditional computing methods. However, to achieve even greater...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
EUR2022-134045
MEMRISTORES DE PEROVSKITA PARA REDES DE IMPULSOS
90K€
Cerrado
2DMEM
Revealing the physics of switching mechanism in 2D materials...
200K€
Cerrado
NEUROMORPH
Emerging Network Structures and Neuromorphic Applications
2M€
Cerrado
MottSwitch
Highly Energy-Efficient Resistive Switching in Defect- and S...
2M€
Cerrado
TEC2017-90969-EXP
BENEFICIO DEL RUIDO EN LA RESPUESTA DE MEMRISTORES PARA EL D...
36K€
Cerrado
Duración del proyecto: 41 meses
Fecha Inicio: 2024-03-20
Fecha Fin: 2027-08-31
Líder del proyecto
FUNDACION IMDEA NANOCIENCIA
Otra investigación y desarrollo experimental en ciencias naturales y técnicas asociacion
TRL
4-5
| 130K€
Presupuesto del proyecto
181K€
Descripción del proyecto
Neuromorphic computing (NC) represents a groundbreaking approach to computation, drawing inspiration from the human brain to enhance power and efficiency compared to traditional computing methods. However, to achieve even greater efficiency, NC requires hardware that also mimics the behavior of neurons and synapses. Memristive synapses are pivotal components in emulating the synaptic plasticity observed in biological neural networks. Nevertheless, the implementation of spintronic memristors compatible with state-of-the-art computing is challenging due to the large current density needed, the long switching times present in ferromagnets and the need of small applied magnetic fields. The objective of this project is then to design, fabricate, and characterize field-free memristive synapses using Gd-based ferrimagnets. We will use two approaches: all-optical magnetic switching and the use of multiferroics to switch the magnetization by the application of electric fields. By taking advantage of the unique properties of ferrimagnets, ultrafast and energy efficient magnetic switching, we aim to develop highly efficient synapses that exhibit memristive behavior without the need for an external magnetic field.