Federated virtual twins for privacy-preserving personalised outcome prediction o...
Federated virtual twins for privacy-preserving personalised outcome prediction of type 2 diabetes treatment
Virtual twins may be used as prognostic tools in precision medicine for personalised disease management. However, their training is a data hungry endeavour requiring big data to be integrated across diverse sources, which in turn...
Virtual twins may be used as prognostic tools in precision medicine for personalised disease management. However, their training is a data hungry endeavour requiring big data to be integrated across diverse sources, which in turn is hampered by privacy legislation such as the General Data Protection Regulation. Privacy-enhancing computational techniques, like federated learning, have recently emerged and hold the promise of enabling the effective use of big data while safeguarding sensitive patient information. In dAIbetes, we build on this technology to develop a federated health data platform for clinical application of the first internationally trained federated virtual twin models. Our primary medical objective is personalised prediction of treatment outcomes in type 2 diabetes, which afflicts 1 in 10 adults worldwide and causes annual expenditures of ca. 893 billion EUR. While healthcare providers are becoming increasingly effective at targeting diabetes risk factors (e.g. diet or exercises), no guidelines as to the expected outcome for a given treatment for a specific patient exist. To address this urgent, yet unmet need, the federated dAIbetes technology will harmonise existing data of ca. 800,000 type 2 diabetes patients of 4 cohorts distributed across the globe, and learn prognostic virtual twin models. Those will be validated for their clinical relevance and applied in clinical practice through a dedicated software. We aim to demonstrate that our personalised predictions have a prediction error that is at least 10% lower than that of population average-based models. This federated virtual twin technology will enable personalised disease management and act as a blueprint for other complex diseases. Our consortium combines expertise in artificial intelligence, software development, privacy protection, cyber security, and diabetes and its treatment. Ultimately, we aim to resolve the antagonism of privacy and big data in cross-national diabetes research.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.