Federated foundational models for embodied perception
Computer vision is beginning to see a paradigm shift with large-scale foundational models that demonstrate impressive results on a wide range of recognition tasks. While achieving impressive results, these models learn only static...
Computer vision is beginning to see a paradigm shift with large-scale foundational models that demonstrate impressive results on a wide range of recognition tasks. While achieving impressive results, these models learn only static 2D image representations based on observed correlations between still images and natural language. However, our world is three-dimensional, full of dynamic events and causal interactions. We argue that the next scientific challenge is to invent foundational models for embodied perception – that is perception for systems that have a physical body, operate in a dynamic 3D world and interact with the surrounding environment.The FRONTIER proposal addresses this challenge by means of:1. developing a new class of foundational model architectures grounded in the geometrical and physical structure of the world that seamlessly combine large-scale neural networks with learnable differentiable physical simulation components to achieve generalization across tasks, situations and environments;2. designing new learning algorithms that incorporate the physical and geometric structure as constraints on the learning process to achieve new levels of data efficiency with the aim of bringing intelligent systems closer to humans who can often learn from only a few available examples; 3. developing new federated learning methods that will allow sharing and accumulating learning experiences across different embodied systems thereby achieving new levels of scale, accuracy, and robustness not achievable by learning in any individual system alone.Breakthrough progress on these problems would have profound implications on our everyday lives as well as science and commerce with safer cars that learn from each other, intelligent production lines that collaboratively adapt to new workflows or a new generation of smart assistive robots that automatically learn new skills from the Internet and each other enabled by the advances from this project.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.