Fast yet accurate routine rational design of novel enzymes
Life could not be sustained without the presence of enzymes, which are responsible for accelerating the chemical reactions in a biologically compatible timescale. Enzymes present other advantageous features such as high specificit...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
RYC2021-032530-I
Multiscale Computational Approaches for Enzyme Engineering a...
236K€
Cerrado
IJCI-2016-27503
Computational studies of enzymatic reactions
64K€
Cerrado
PTQ-17-09078
Desarrollo de una herramienta rápida y precisa para la param...
98K€
Cerrado
EQC2019-005580-P
Recursos Computacionales basados en GPUs para Dinámica Molec...
48K€
Cerrado
JCI-2010-06532
Interface and interplay between Computer Science, Engineerin...
101K€
Cerrado
TEC2017-84877-R
DESARROLLO DE SISTEMAS DE COMPUTACION NO CONVENCIONAL DE ALT...
204K€
Cerrado
Información proyecto FASTEN
Duración del proyecto: 67 meses
Fecha Inicio: 2023-02-27
Fecha Fin: 2028-09-30
Líder del proyecto
UNIVERSITAT DE GIRONA
No se ha especificado una descripción o un objeto social para esta compañía.
Total investigadores226
Presupuesto del proyecto
2M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Life could not be sustained without the presence of enzymes, which are responsible for accelerating the chemical reactions in a biologically compatible timescale. Enzymes present other advantageous features such as high specificity and selectivity, plus they operate under very mild biological conditions. Inspired by these extraordinary characteristics, many scientists wondered about the possibility of designing new enzymes for industrially-relevant targets. Unfortunately, none of the current enzyme design strategies is able to rapidly design tailor-made enzymes at a reduced cost. This is limiting the general routine application of enzyme catalysis in industry, and thus the chemical manufacturing competitiveness. The goal of this project is to develop a fast yet accurate computational enzyme design approach for allowing the routine design of highly efficient enzymes. FASTEN combines computational chemistry, deep learning, graph theory, and computational geometry for controlling the complexity of enzyme catalysis in a new computational protocol that will capture the chemical steps and conformational changes that take place along the catalytic itinerary. Active site and distal activity-enhancing mutations are predicted based on correlation and co-evolutionary-based guidelines, and the catalytic potential of the new designs is estimated by means of geometry-based oracles. This new computational approach will be validated with the design of enzymes presenting complex conformational dynamics and multi-step mechanisms. The experimental evaluation of many of the designs will finally reveal the potential of this new approach for the fast routinely design of industrially-relevant enzymes. FASTEN has the potential of making the routine design of enzymes possible, thus improving our current lives and leading to a more sustainable world for our generations.