Fast and Nanoscale Spin Control via Single Flux Quanta in Superconductors
Quantum control of spin qubit plays a key role in spintronics, quantum sensing and quantum information processing. The spin control rate determines the quantum state fidelity and the accuracy in quantum sensing, and thus needs to...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
OPTODNPCONTROL
Optically controlled carrier and Nuclear spintronics toward...
1M€
Cerrado
SOLIDSPINQOPT
Quantum Optics with Spins in Solid State The Power of Ensem...
2M€
Cerrado
MagneticTWIST
Ultrafast control of magnetism with twisted plasmons
2M€
Cerrado
QuantumMagnonics
Interfacing spin waves with superconducting quantum circuits...
2M€
Cerrado
MASSS
Manipulation of a Single Spin in a Superconductor
173K€
Cerrado
HYSCORE
Hybrid quantum networks for spin coherent technologies
2M€
Cerrado
Información proyecto FastoSpintrolux
Duración del proyecto: 29 meses
Fecha Inicio: 2020-04-17
Fecha Fin: 2022-10-13
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Quantum control of spin qubit plays a key role in spintronics, quantum sensing and quantum information processing. The spin control rate determines the quantum state fidelity and the accuracy in quantum sensing, and thus needs to be enhanced for many applications. Meanwhile, building scalable quantum technology often involves densely distributed qubits, which requires the feasibility of addressing individual spins with high spatial resolution. In order to cope with the growing demand for the operational rate and spatial precision, the experienced researcher proposes to use single flux quanta (Abrikosov vortices) in superconductors to individually address the electronic spin of nitrogen-vacancy (NV) centers with far-field optics. Optical manipulation of single vortices like optical tweezers enable the nanoscale addressability of individual spins. By rapidly passing a vortex and its strong field through the spin target, he aims at swiftly tuning the spin resonance and coherently driving spin transitions with gigahertz rate. This proposal opens new possibilities of exploring the coupling between mesoscopic flux quanta and single qubits, and provides a promising method for efficiently entangling multiple spins via optically driven Abrikosov vortices.