Fairness and Intersectional Non Discrimination in Human Recommendation
FINDHR is an interdisciplinary project that seeks to prevent, detect, and mitigate discrimination in AI. Our research will be contextualized within the technical, legal, and ethical problems of algorithmic hiring and the domain of...
FINDHR is an interdisciplinary project that seeks to prevent, detect, and mitigate discrimination in AI. Our research will be contextualized within the technical, legal, and ethical problems of algorithmic hiring and the domain of human resources, but will also show how to manage discrimination risks in a broad class of applications involving human recommendation.
Through a context-sensitive, interdisciplinary approach, we will develop new technologies to measure discrimination risks, to create fairness-aware rankings and interventions, and to provide multi-stakeholder actionable interpretability. We will produce new technical guidance to perform impact assessment and algorithmic auditing, a protocol for equality monitoring, and a guide for fairness-aware AI software development. We will also design and deliver specialized skills training for developers and auditors of AI systems.
We ground our project in EU regulation and policy. As tackling discrimination risks in AI requires processing sensitive data, we will perform a targeted legal analysis of tensions between data protection regulation (including the GDPR) and anti-discrimination regulation in Europe. We will engage with underrepresented groups through multiple mechanisms including consultation with experts and participatory action research.
In our research, technology, law, and ethics are interwoven. The consortium includes leaders in algorithmic fairness and explainability research (UPF, UVA, UNIPI, MPI-SP), pioneers in the auditing of digital services (AW, ETICAS), and two industry partners that are leaders in their respective markets (ADE, RAND), complemented by experts in technology regulation (RU) and cross-cultural digital ethics (EUR), as well as worker representatives (ETUC) and two NGOs dedicated to fighting discrimination against women (WIDE+) and vulnerable populations (PRAK).
All outputs will be released as open access publications, open source software, open datasets, and open courseware.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.