Fabrication of self powered 2D MoS2 field effect synaptic transistors actuated b...
Fabrication of self powered 2D MoS2 field effect synaptic transistors actuated by triboelectric nanogenerators for neuromorphic application
The development of neuromorphic devices and sensory networks has led to the creation of new systems similar to human brains. An
artificial synapse can be used to perform various functions, such as long-term potentiation, depressio...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Información proyecto FAST_TRIBONIC
Duración del proyecto: 35 meses
Fecha Inicio: 2024-04-17
Fecha Fin: 2027-03-31
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The development of neuromorphic devices and sensory networks has led to the creation of new systems similar to human brains. An
artificial synapse can be used to perform various functions, such as long-term potentiation, depression, and spike-timing-dependent
plasticity. Various types of synaptic electronics can be used to develop sensory neurons. Some of these include three-terminal devices
and memristors with neuromorphic configurations. However, a particular device ideal for neuromorphic applications is a field-effect
transistors based on the two-dimensional layered semiconductor. To reduce the energy consumption of artificial sensory neurons, a
self-powered neuromorphic system can be developed that can operate on mechanical energy. This strategy can be useful in
developing systems that are energy-efficient.
This project aims to develop a functional and biological self-powered artificial synapse sensory system similar to the human
somatosensory system. This will allow engineers to create self-powered electronic sensors, actuators, and communicators capable of
handling biological intelligence. This project (FAST_TRIBONIC) involves the development of high-performance field-effect synaptic
transistors with 2D MoS2 layered semiconductors and the construction of powerful triboelectric nanogenerators (TENGs) for the effective
conversion of mechanical energy into electricity. Also, to develop an indigenous neuroelectric interface (artificial electronic skin) by integrating synaptic
transistors and TENG during non-academic placement. By coupling TENG and field-effect transistors, a new field
of tribotronics has been established for devices such as memory chips and tactile sensors. These technologies are expected to play a
vital role in developing modern high-performance, energy-efficient self-powered wearable electronic devices.