Many important breakthroughs in science have occurred when investigating the laws of nature at extremes. Strong-field effects, such as relativistic plasma dynamics, high-harmonic generation and laser-driven particle acceleration,...
Many important breakthroughs in science have occurred when investigating the laws of nature at extremes. Strong-field effects, such as relativistic plasma dynamics, high-harmonic generation and laser-driven particle acceleration, appear at extreme intensities of electromagnetic fields. By using very short laser pulses and focusing them very tightly, these effects and their applications come within reach of table-top systems. I will explore extreme strong-field physics at the fundamental limits of spatio-temporal confinement and open the door to a completely new regime of strong-field interactions in the vacuum ultraviolet. I will achieve this by scaling soliton-driven light sources in hollow capillary fibres by two orders of magnitude in power compared to the state of the art.
I will create optical attosecond pulses (sub-cycle electric field transients in the visible part of the electromagnetic spectrum) with multi-terawatt peak power and excellent pulse contrast, with homogeneous linear polarisation, circular polarisation, or as radial vector beams. The latter can be focused to sub-wavelength spot sizes and create a relativistic electric field in the longitudinal direction. In combination with the sub-cycle duration, this will be a completely unique driving pulse for plasma physics and particle acceleration. I will use these pulses for the generation of high-energy isolated extreme ultraviolet and X-ray attosecond pulses from plasma mirrors and for the creation of isolated multi-MeV attosecond electron bunches using in-vacuum strong-field electron acceleration, both in a compact table-top system.
I will generate few-femtosecond pulses tuneable across the vacuum ultraviolet (100 nm to 200 nm) with 300 GW peak power, opening the door to a regime of ultraviolet-driven strong-field and relativistic nonlinear effects in both gases and plasmas that has been almost entirely inaccessible, and hence unexplored.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.