Innovating Works

Extr3Me

Financiado
Extreme Mechanics of Metamaterials From ideal to realistic conditions
Manipulating physical signals such as light, sound, heat or motion is a vital challenge in multiple areas of science. Due to recent advances in digital fabrication techniques, the last years have seen a revolution in artificial pe... Manipulating physical signals such as light, sound, heat or motion is a vital challenge in multiple areas of science. Due to recent advances in digital fabrication techniques, the last years have seen a revolution in artificial periodic composites with on-demand electromagnetic, acoustic, thermal and mechanical properties. These so-called metamaterials become particularly interesting in mechanics, where geometrical effects and nonlinearities are much stronger than in any other physical field. Over the past 5 years, the community -including myself- has discovered a plethora of extreme functionalities, e.g. mechanical metamaterials that are very light, stiff and strong at the same time, that have negative elastic moduli or that exhibit programmable shape-changes. Importantly, such advanced properties are typically designed through a purely geometrical framework. Yet, this impressive progress is so far confined to idealized settings, namely for homogeneous boundary conditions, imperfection-free structures and purely elastic constituents under quasi-static driving. This traditional focus severely limits our understanding of metamaterials and their potential for applications. Here, I propose to uncover the extreme mechanics of metamaterials under realistic conditions. Specifically, by generalizing the geometrical framework to allow for deviations from the ideal limit, and by validating it through a wide array of experimental and numerical techniques, I will establish: 1) the effect of inhomogeneous boundary conditions; 2) the sensitivity to geometric imperfections; 3) the role of dissipation. Just as the fundamental understanding of defects and dislocations revolutionized materials science, by exploring perturbations in metamaterials I will push the frontiers of solids mechanics and open up avenues for the design of robust advanced functionalities tailored to realistic complex scenarios, from prosthetics to aerospace. ver más
31/12/2024
UvA
1M€
Duración del proyecto: 63 meses Fecha Inicio: 2019-09-12
Fecha Fin: 2024-12-31

Línea de financiación: concedida

El organismo H2020 notifico la concesión del proyecto el día 2019-09-12
Línea de financiación objetivo El proyecto se financió a través de la siguiente ayuda:
ERC-2019-STG: ERC Starting Grant
Cerrada hace 6 años
Presupuesto El presupuesto total del proyecto asciende a 1M€
Líder del proyecto
UNIVERSITEIT VAN AMSTERDAM No se ha especificado una descripción o un objeto social para esta compañía.
Perfil tecnológico TRL 4-5