EXTREME EVENTS ARTIFICIAL INTELLIGENCE FOR DETECTION AND ATTRIBUTION
Often, extreme events provide representations of the future climate, but not all extremes are harbingers of the future. Thus, in order to be useful for adaptation in support to future projections, a causal link between events and...
Often, extreme events provide representations of the future climate, but not all extremes are harbingers of the future. Thus, in order to be useful for adaptation in support to future projections, a causal link between events and human influence on climate must be established or refuted. This is why the Extreme event attribution field has recently developed. However, extreme event detection, attribution and projections studies currently face major limitations.
XAIDA will fill these gaps. Using new artificial intelligence techniques, and a strong two-way interaction with key stakeholders, it will (i) characterize, detect and attribute extreme events using a novel data-driven, impact-based approach, (ii) assess their underlying causal pathways and physical drivers using causal networks methods, and (iii) simulate high-intensity and as yet unseen events that are physically plausible in present and future climates.
To achieve this, XAIDA brings together teams of specialists in extreme event attribution, atmospheric dynamics, climate modelling, machine learning and causal inference, to:
● Understand the effect of climate change on a variety of impacting atmospheric phenomena currently poorly understood or quantified (cyclones, convective storms, long-lived anomalies, or summer compound events), both for past and future evolutions;
● Develop, in co-design with a community of key stakeholders, a novel, broader and impacts-based attribution and projection framework which extracts causal pathways of extremes;
● Develop storylines of events of unseen intensity, based on machine learning methods;
● Provide new tools for model assessment of causal pathways leading to extreme events and investigate the causes of disagreements between models and observations;
● Develop an interaction and communication platform with stakeholders with the ambition to improve training and education on climate change and impacts and to bring these developments to future operational climate servicesver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.