Extremal Problems in Combinatorics and Their Applications
In this proposal we describe a variety of problems in Extremal Combinatorics which we intend to study. These problems belong to the following two areas:
1. Additive Combinatorics: We intend to investigate different aspects of Gre...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
QRGRAPH
Quasirandomness in Graphs and Hypergraphs
743K€
Cerrado
LocalGlobal
Local vs Global Properties of Large Discrete Structures
2M€
Cerrado
DMMCA
Discrete Mathematics methods challenges and applications
1M€
Cerrado
EXPLOREMAPS
Combinatorial methods from enumerative topology to random d...
750K€
Cerrado
Información proyecto PECTA
Líder del proyecto
TEL AVIV UNIVERSITY
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
100K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
In this proposal we describe a variety of problems in Extremal Combinatorics which we intend to study. These problems belong to the following two areas:
1. Additive Combinatorics: We intend to investigate different aspects of Green's variant of the classical Removal Lemma from Graph Theory.
Besides being a fundamental problem, we have recently shown that certain variants of Green's result have applications in Theoretical Computer Science. We are working on extending this work to more general settings with the hope of resolving several open problems.
2. Quasi-Randomness: The theory of Quasi-Randomness is one of the most interesting ways in which combinatorics interacts with other areas of
mathematics. The main goal is to come up with conditions under which deterministic structures behave like random ones. This concept turned out to be extremely useful for tackling a variety of open problems in different areas. We intend to consider several problem related to graphs and hypergraphs and to further extend this theory.