Extending the range of the glassy state Exploring structure and property limits...
Extending the range of the glassy state Exploring structure and property limits in metallic glasses
Metallic glasses (MGs), among the most actively studied metallic materials, have attractive mechanical properties (high elastic limit) but show work-softening and lack ductility. Recent work suggests the as-cast state of MGs can b...
ver más
Descripción del proyecto
Metallic glasses (MGs), among the most actively studied metallic materials, have attractive mechanical properties (high elastic limit) but show work-softening and lack ductility. Recent work suggests the as-cast state of MGs can be much altered by thermomechanical treatments: rejuvenation (to higher energy) offers improved plasticity (perhaps even desirable work-hardening); relaxation (to lower energy) offers access to ultrastable states. Work of the PI has just shown that even simple thermal cycling can induce rejuvenation comparable with that from heavy plastic deformation, while elastic stress cycling can accelerate annealing. The research aims to extend the range of glassy states and to explore the consequences of unusual states, particularly for mechanical properties and for phase stability/crystallization. One possible limit to rejuvenation is the onset of fast crystallization. This regime will be studied for its relevance to crystallization of melts of low glass-forming ability, of interest to fill a gap in existing crystal-growth theory and for application in phase-change memory. Nine work-packages address these and further issues: exploitation of inhomogeneity in MGs to improve properties and enable processing, e.g. to permit stress relief without accompanying undesirable embrittlement; probing the maximum extent of anisotropy in MGs and the links between anisotropic structure and flow. Complementing the many mechanical and structural studies, molecular-dynamics simulations will be used to identify local events relating to rejuvenation/relaxation, to characterize (at atomic level) the anisotropy induced by anelastic strain and viscoplastic flow, to characterize the processes at the solid/liquid interface in pure-metal systems to understand crystal-growth mechanisms, especially why growth of ccp metals is so fast (and glass-forming ability very low). From preliminary results, it is expected that properties can be widened much beyond those of as-cast MGs.
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.