Extended metal organic materials formed via subcomponent self assembly
This project aims to synthesise new metal-containing polymeric materials through self-assembly from simple building blocks. These self-assembled materials will be formed in water directly from diamine and dicarbonyl monomer units...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
MECOFUPO
Metal containing Functional Polymers through Subcomponent Se...
171K€
Cerrado
SPIM
Metallopolymers with Metal Metal Bonds The Synthesis Chara...
181K€
Cerrado
MAT2013-44463-R
CONSTRUCCION DE SUPERFICIES HOMOQUIRALES ESTEREOESPECIFICAS...
61K€
Cerrado
CTQ2010-18208
REACCIONES DE CICLOADICION DE ARINOS: DE LA SINTESIS ORGANIC...
159K€
Cerrado
MAT2016-75883-C2-1-P
MATERIALES METAL-ORGANICOS BIOINSPIRADOS E INTELIGENTES CON...
97K€
Cerrado
FJCI-2017-32956
Síntesis, diseño y aplicaciones de polímeros de coordinación...
50K€
Cerrado
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
This project aims to synthesise new metal-containing polymeric materials through self-assembly from simple building blocks. These self-assembled materials will be formed in water directly from diamine and dicarbonyl monomer units linked by imine bonds coordinated to copper(I) templates. The project is intrinsically multidisciplinary, building upon the techniques of organic synthesis and coordination chemistry to branch into applications in the fields of self-assembly and polymer chemistry. It spans the fields of organic and inorganic chemistry, bridging into materials science and nanotechnology. The project builds upon the experience of the applicant in metallo-supramolecular and materials chemistry to gain a deeper understanding of how subcomponent self-assembly may be used synthetically to generate complex and functional metal-organic materials. Then materials properties of the products including their electrical conductivity and light-harvesting properties will also be investigated. The materials produced will be dynamic-covalent polymers, capable of interchanging monomer units in solution. Despite their dynamic nature, the imine bonds between monomer units are not prone to rupture (C=N bond dissociation energy > 600 kJ mol-1), which could lead to strong polymer chains, and it has been demonstrated that coordination to copper(I) renders imines stable to hydrolysis even in aqueous solution. Although this project builds upon concepts developed in the fields of supramolecular and coordination polymers, the robust nature of the linkages between monomer units sets this project apart from these fields. The materials that will be prepared are predicted to be stiff and strong, and initial studies indicate that they could serve as electrically conductive molecular wires and lead to applications as sensors, conductors, magnetic materials or light harvesting devices.