We plan to demonstrate a new approach towards quantum memories based on a theoretical proposal which is centered around the phenomenon of selective radiance. Selective radiance occurs when the distance between emitters around a wa...
ver más
Descripción del proyecto
We plan to demonstrate a new approach towards quantum memories based on a theoretical proposal which is centered around the phenomenon of selective radiance. Selective radiance occurs when the distance between emitters around a waveguide is smaller than the wavelength of the emitters. In this case destructive interference suppresses light scattering into all modes except the forward propagating target mode. This drastically reduces photon losses and increases the efficiency of the quantum memory operation. The error rate of such a new type of quantum memory scales with the optical depth (OD) as exp(-OD) in contrast to the previously established 1/OD. We plan to implement this new scheme with atomic emitters coupled to a nanofiber. Nanofiber based atom-light interfaces are versatile and scalable platforms which allow to precisely study these fundamental quantum effects and at the same time allow for easy integration into fiber based applications. The effect of selective radiance depends upon a lattice with a period smaller than the emitter wavelength. This will be achieved through an appropriate new choice of the laser wavelengths used in the optical trapping scheme. For best memory performance all lattice sites need to be filled. To realize this we use a collisional blockade effect in a Lambda-enhanced gray molasses cooling which ejects one atom every time two or more atoms are present at a lattice site. To optimize the quantum memory performance we will perform an in-depth study of the phenomenon of selective radiance by analyzing the transmission spectrum, the scattering into free space and by ring-down measurements. In the last step we will demonstrate the quantum memory performance and the exponential scaling with OD. The successful demonstration of this type of quantum memory is an important steps towards large distance distribution of quantum information and paves the way for future quantum networks.
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.