Exploring the Molecular Properties of Atmospheric Freshly Nucleated Particles
Aerosol particles are ubiquitous constituents in the ambient atmosphere. Ultrafine particles (< 10 nm) show adverse effects on our public health, as inhalation leads to an elevated risk of lung- and cardiovascular diseases. Aeroso...
Aerosol particles are ubiquitous constituents in the ambient atmosphere. Ultrafine particles (< 10 nm) show adverse effects on our public health, as inhalation leads to an elevated risk of lung- and cardiovascular diseases. Aerosol particles also influence the global climate, by scattering sunlight away from Earth's surface and acting as seeds for cloud droplet formation. Combined, these effects lead to an overall cooling of the Earth, directly counteracting the warming effect of greenhouse gases. According to the IPCC, aerosol particles pose the largest uncertainty in global climate forecast. This uncertainty is caused by the lack of understanding of the early growth behaviour of small (< 3 nm) particles. The largest source of aerosol particles (50-90%) is from nucleation of vapours in the air leading to a burst of freshly nucleated particles (FNPs) of 1-2 nm in size. However, even the basic fundamental properties of these FNPs remain unknown and cannot be studied using currently available experimental techniques. I propose a unique approach to target the properties of FNPs by applying a versatile suite of computational methods, ranging from quantum chemical calculations to application of conceptually new machine learning models. The scientific objectives are: 1) To determine the chemical composition and stability of FNPs. 2) To understand how FNPs evolve over time via exchange of vapours with the environment. 3) To investigate how FNPs transform as a consequence of chemical reactions occurring at the surface or inside the particles. The research will provide unprecedented insight into the molecular level properties of FNPs. This project will directly supply input parameters (chemical composition, thermodynamics and kinetics) for atmospheric models, which are crucial in order to constrain the large uncertainty in climate predictions caused by small aerosol particles.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.