Exploring the impact of Stellar Multiplicity on planet formation Across Disc Evo...
In regions of active star formation, the protoplanetary discs around young stars act as planetary factories. Recent observing campaigns have shown that the majority of protostars belong to multiple stellar systems: the younger the...
ver más
PEBBLES
Exploring the pristine conditions for transforming interstel...
2M€
Cerrado
AYA2011-26202
SOBRE DISCOS (PROTO-)PLANETARIOS Y PLANETAS
246K€
Cerrado
RYC-2011-07920
The nursery of planets. Gas and dust evolution in protoplane...
184K€
Cerrado
Últimas noticias
27-11-2024:
Videojuegos y creaci...
Se abre la línea de ayuda pública: Ayudas para la promoción del sector del videojuego, del pódcast y otras formas de creación digital
27-11-2024:
DGIPYME
En las últimas 48 horas el Organismo DGIPYME ha otorgado 1 concesiones
Descripción del proyecto
In regions of active star formation, the protoplanetary discs around young stars act as planetary factories. Recent observing campaigns have shown that the majority of protostars belong to multiple stellar systems: the younger the stars, the higher the degree of multiplicity. Young discs are then strongly affected by stellar multiplicity, unavoidably modifying the way in which planets form. The detailed evolution of multiple systems with discs and planets however remains to be explored. Since most current models have been designed for single stars, there is an urgent need to extend these models to multiple stars. This will pave the way for a better understanding of the process of planet formation, at a more general level. The Stellar-MADE project aims to provide a comprehensive view of disc dynamics and planet formation within multiple stellar systems. My team and I will thoroughly study multiples to: (1) Establish the formation channels of protoplanetary discs around young stellar objects; (2) Follow disc dynamics and grain growth in order to identify the regions of planetesimal formation; (3) Characterise planetary architectures and the resulting exoplanet population. To achieve our goals we will perform hydrodynamical and N-body simulations, developing and adapting state-of-the-art codes (Phantom, MCFOST, Rebound). Our calculations will include a broad range of physical processes: disc thermodynamics, radiative transfer, gravitational perturbations, aerodynamic friction, dust growth, and Mean-Motion Resonances. This will allow us to identify and quantify stellar multiplicity effects across evolution. My previous work on binary stars constitutes proof-of-concept that it is possible to coherently connect protoplanetary disc evolution to planetary architectures. Unveiling the effects of stellar multiplicity on planet formation will be a major breakthrough, which will enable us to interpret the whole exoplanetary population under a new and more realistic prism.
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.