Innovating Works

FLATBANDS

Financiado
Exploring strong correlations in flat bands
"One spectacular phenomenon in quantum many-body systems is the emergence of non-local quasiparticles with fractional quantum numbers and anyonic statistics. Of fundamental interest, fractionalization also holds promise for fault-... "One spectacular phenomenon in quantum many-body systems is the emergence of non-local quasiparticles with fractional quantum numbers and anyonic statistics. Of fundamental interest, fractionalization also holds promise for fault-tolerant quantum computation motivating the search for such exotic phases of matter. Signatures of this phenomenon remain sparse and mostly restricted to fractional quantum Hall states, despite being predicted to also occur in other systems such as frustrated quantum magnets. An essential feature shared by both systems is the massive ground state degeneracy, or flat band, out of which fractionalization emerges. The underlying non-local topological order of such phases is an outstanding experimental challenge to detect with only local observables. Building on my experience to study ""hidden"" order in one dimensional systems, I will address the physics of strong correlations in two and three dimensional flatbands using ultracold atoms and the unique probes of atomic physics. I propose in FLATBANDS to build a novel strontium quantum gas microscope to study both fractional quantum Hall states and highly frustrated magnets. I will first rotate mesoscopic dilute Bose gases to mimic the behaviour of electrons in magnetic fields. Using observables down to individual particles, I will study density-density correlations in the lowest Landau level, providing signatures of emerging Laughlin-like states. On the same platform, I will measure spin correlations and detect fractionalization in highly frustrated magnets. Using atoms trapped in programmable tweezer arrays and excited in Rydberg states, I will engineer quantum spin-ice and directly observe the emergence of magnetic monopoles. By following two complementary routes to address strong correlations and topological order, FLATBANDS will open fascinating perspectives with impact in quantum information, quantum computation, and condensed matter physics." ver más
28/02/2026
1M€
Duración del proyecto: 77 meses Fecha Inicio: 2019-09-06
Fecha Fin: 2026-02-28

Línea de financiación: concedida

El organismo H2020 notifico la concesión del proyecto el día 2019-09-06
Línea de financiación objetivo El proyecto se financió a través de la siguiente ayuda:
ERC-2019-STG: ERC Starting Grant
Cerrada hace 6 años
Presupuesto El presupuesto total del proyecto asciende a 1M€
Líder del proyecto
UNIVERSITY OF HAMBURG No se ha especificado una descripción o un objeto social para esta compañía.
Perfil tecnológico TRL 4-5