"One spectacular phenomenon in quantum many-body systems is the emergence of non-local quasiparticles with fractional quantum numbers and anyonic statistics. Of fundamental interest, fractionalization also holds promise for fault-...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
TopFront
Expanding the Topological Frontier in Quantum Matter from C...
2M€
Cerrado
ANYON
Engineering and exploring anyonic quantum gases
1M€
Cerrado
QUAGATUA
Quantum Gauge Theories and Ultracold Atoms
1M€
Cerrado
PID2020-112687GB-C21
FISICA CUANTICA DE MUCHOS CUERPOS CON GASES CUANTICOS VESTI...
254K€
Cerrado
MANYBO
Many body physics in gauge fields with ultracold Ytterbium a...
1M€
Cerrado
GENESYS
from Generalised hydrodynamics to new Effective descriptions...
Cerrado
Información proyecto FLATBANDS
Duración del proyecto: 77 meses
Fecha Inicio: 2019-09-06
Fecha Fin: 2026-02-28
Líder del proyecto
UNIVERSITY OF HAMBURG
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
1M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
"One spectacular phenomenon in quantum many-body systems is the emergence of non-local quasiparticles with fractional quantum numbers and anyonic statistics. Of fundamental interest, fractionalization also holds promise for fault-tolerant quantum computation motivating the search for such exotic phases of matter. Signatures of this phenomenon remain sparse and mostly restricted to fractional quantum Hall states, despite being predicted to also occur in other systems such as frustrated quantum magnets. An essential feature shared by both systems is the massive ground state degeneracy, or flat band, out of which fractionalization emerges. The underlying non-local topological order of such phases is an outstanding experimental challenge to detect with only local observables. Building on my experience to study ""hidden"" order in one dimensional systems, I will address the physics of strong correlations in two and three dimensional flatbands using ultracold atoms and the unique probes of atomic physics. I propose in FLATBANDS to build a novel strontium quantum gas microscope to study both fractional quantum Hall states and highly frustrated magnets. I will first rotate mesoscopic dilute Bose gases to mimic the behaviour of electrons in magnetic fields. Using observables down to individual particles, I will study density-density correlations in the lowest Landau level, providing signatures of emerging Laughlin-like states. On the same platform, I will measure spin correlations and detect fractionalization in highly frustrated magnets. Using atoms trapped in programmable tweezer arrays and excited in Rydberg states, I will engineer quantum spin-ice and directly observe the emergence of magnetic monopoles. By following two complementary routes to address strong correlations and topological order, FLATBANDS will open fascinating perspectives with impact in quantum information, quantum computation, and condensed matter physics."