EXploring Photoinduced Enzyme pRomIscuity in the Glucose-Methanol-Choline oxidor...
EXploring Photoinduced Enzyme pRomIscuity in the Glucose-Methanol-Choline oxidoreductase family to dEvelop New phoTocAtaLysts
Photoenzymes are rare biocatalysts that use the energy contained in photons to perform chemical reactions. To date, only one natural photocatalyst is known to have biotechnological applications; the Fatty Acid Photodecarboxylase (...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
DrEAM
Directed Evolution of Artificial Metalloenzymes for In Vivo...
2M€
Cerrado
BES-2016-078815
BIOELECTROCATALISIS CON HIDROGENASAS: PRODUCCION FOTOBIOELEC...
93K€
Cerrado
IVMMHBCSS
In Vivo Metabolite Modification in Hybrid Biological and Che...
282K€
Cerrado
OXIDISE
Interaction and Kinetics of Oxidative Biomass Degrading Enzy...
2M€
Cerrado
CTQ2016-77270-R
DISEÑO Y SINTESIS DE MOLECULAS DE INTERES BIOLOGICO MEDIANTE...
69K€
Cerrado
HOTZYMES
Redesigning biocatalysis Thermal tuning of one pot multienz...
3M€
Cerrado
Información proyecto EXPERIMENTAL
Duración del proyecto: 38 meses
Fecha Inicio: 2022-06-14
Fecha Fin: 2025-08-14
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Photoenzymes are rare biocatalysts that use the energy contained in photons to perform chemical reactions. To date, only one natural photocatalyst is known to have biotechnological applications; the Fatty Acid Photodecarboxylase (FAP), allowing the production of hydrocarbons from fatty acids. FAP belongs to a superfamily of enzymes called Glucose Methanol oxidoreductases (GMCox). Still, the FAP group is the only one known to perform photochemistry despite the high degree of structural similarity and presence of a photosensitive cofactor, Flavine Adenine Dinucleotide (FAD), in all GMCox.
We reason that the GMCox family could have a latent photochemical function, and we would like to exploit it. Therefore, the objective of this project is to EXplore Photoinduced Enzyme pRomIscuity in the Glucose-Methanol-Choline oxidoreductase family to dEvelop New phoTocAtaLysts (EXPERIMENTAL). To this end, we will first test the photoinduced substrate promiscuity with different GMCox using an accelerated serendipity approach. In a second step, we will optimize the newly discovered photoenzymatic activity by directed evolution. Finally, the enzymatic mechanism will be characterized using different biophysics approaches, ranging from time-resolved spectroscopy to serial femtosecond crystallography.
This project is inherently interdisciplinary, combining chemistry, biochemistry and biophysics to develop new photocatalysts for biotechnological purposes. For fundamental research these new photoenzymes will be an opportunity allowing the study of ultrafast processes that occur during catalysis and can only be observed with light-dependent enzymes such as electron and/or proton transfer, bond breaking ect.
In fine, the goals of EXPERIMENTAL are to provide a better appreciation of the capabilities of enzymes and meet the demand for new and sustainable methods in organic synthesis by providing with the GMCox family a toolbox for the design of new light-driven reactions.