Exploring Gravity with Ultracold Cadmium and Strontium Optical Clocks and Bragg...
Exploring Gravity with Ultracold Cadmium and Strontium Optical Clocks and Bragg Interferometers
The main aim of the TICTOCGRAV is to explore the limits of contemporary physics with a new generation of atomic quantum sensors, namely optical atomic clocks and atomic gravimeters.
After 100 years of General Relativity and Quant...
The main aim of the TICTOCGRAV is to explore the limits of contemporary physics with a new generation of atomic quantum sensors, namely optical atomic clocks and atomic gravimeters.
After 100 years of General Relativity and Quantum Mechanics, both theories have been tested at an unprecedented level. Direct detection of gravitational waves is a great success and represents another impressive confirmation of the present theory of gravitation GR. Indeed, we are living a Quantum Revolution, in which advanced quantum concepts are at the heart of several devices, from precision navigation and location on Earth to secure communication protocols based on entangled photons.
Despite all these great success in both areas, unfortunately, we still lack a full comprehension at the fundamental level. As a matter of fact, a full quantum treatment of space-time is still under discussion in the community. While several theoretical attempts have been pursued, a clear solution to the problem does not exist yet. Very likely, an answer to this problem will come from high precision experiments capable of measuring tiny gravitational effects on quantum systems as atomic clocks and quantum inertial sensors.
TICTOCGRAV will address this questions experimentally by performing ultimate precision tests of gravity with fountains of alkali-earth metals, namely Cadmium and Strontium atoms.
Specifically, TICTOCGRAV will perform the highest precision tests so far of:
-the weak equivalence principle (WEP) below 10^-13 with quantum probes, exploring also possible tests of spin-gravity couplings at the same level;
- quantum interference of high precision clocks in a gravitational potential; demonstrating for the first time gravity induced decoherence mechanisms, opening the way towards a possible explanation of quantum to classical transition in macroscopically entangled quantum systems.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.