Exploiting ex vivo expansion and deep multiomics profiling to bring novel effic...
Exploiting ex vivo expansion and deep multiomics profiling to bring novel efficient and safer hematopoietic stem cell gene therapies to clinical application
Hematopoietic stem cells (HSC) are an elusive cell type, whose presence can only be inferred retrospectively, from the outcome of time-consuming transplantation experiments. Since current state-of-the-art does not allow prospectiv...
ver más
30/09/2026
Líder desconocido
4M€
Presupuesto del proyecto: 4M€
Líder del proyecto
Líder desconocido
Fecha límite participación
Sin fecha límite de participación.
Financiación
concedida
El organismo HORIZON EUROPE notifico la concesión del proyecto
el día 2022-07-15
Este proyecto no cuenta con búsquedas de partenariado abiertas en este momento.
Información adicional privada
No hay información privada compartida para este proyecto. Habla con el coordinador.
Participantes
Conecta tu I+D
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Información proyecto X-PAND
Duración del proyecto: 50 meses
Fecha Inicio: 2022-07-15
Fecha Fin: 2026-09-30
Líder del proyecto
Líder desconocido
Presupuesto del proyecto
4M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Hematopoietic stem cells (HSC) are an elusive cell type, whose presence can only be inferred retrospectively, from the outcome of time-consuming transplantation experiments. Since current state-of-the-art does not allow prospective HSC identification, today’s cell and gene therapy technology has been mostly optimized on surrogate progenitor cells, which differ biologically from HSC. The technological breakthrough of this proposal is to capture HSC in the ex vivo culture, achieved by a combination of innovative expansion conditions, iterative cell sorting and multiomics single cell profiling. Rapid, quantitative and qualitative in vitro HSC assessment predictive of in vivo function may become a sustainable alternative to mouse xenotransplantation experiments. Applied to a state-of-the-art toolbox of genetic engineering technologies including clinically-proven lentiviral vectors as well as established and emerging targeted genome editing approaches, our in vitro HSC readout sets new standards in terms of throughput and turnaround time, allowing to efficiently test a multitude of HSC engineering conditions and tailor the most suitable technological approach to a specific disease or therapeutic application. This new precision-based approach to ex vivo HSC gene therapy will be applied to inherited bone marrow failure syndromes and cancer as paradigmatic examples where gene therapy may be used to correct a cell-intrinsic genetic defect or turn hematopoietic progeny into therapeutic vehicles provided with novel functions. Bringing together experts in cutting-edge gene editing technologies, ex vivo HSC manipulation, assessment of HSC responses to genetic engineering and bioinformatics analysis & integration of multi-dimensional single cell data will maximize the chances of delivering safer and more effective next-generation HSC-based gene therapy products, extending the reach of gene therapy to new disease contexts and making the outcome after gene therapy more predictable.